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ABSTRACT
TOPICS IN BROADBAND GRAVITATIONAL-WAVE ASTRONOMY

The University of Wisconsin–Milwaukee, May 2015

Under the Supervision of Professor Jolien D. E. Creighton

The direct detection of gravitational waves promises to open a new observational

window onto the universe, and a number of large scale efforts are underway worldwide to

make such a detection a reality. In this work, we attack some of the current problems in

gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered

using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe

through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic

strings, relic gravitational waves from inflation, and first order phase transitions in the

early universe are expected to contribute to a stochastic background of gravitational waves

in the PTA frequency band of 1 nHz – 100 nHz. The detection of low-frequency stochastic

backgrounds of gravitational waves in the PTA band is considered in the context of

constructing an optimal cross-correlation statistic in the time domain. Also presented

are some useful applications of this statistic, and discussion on its limitations in actual

gravitational-wave searches.

Also considered are methods by which gravitational waves in the PTA frequency band

can serve as a mechanism for testing general relativity (GR). In addition to providing a

new paradigm for exploring the universe, the direct detection of gravitational waves will

allow general relativity to be tested against other metric theories of gravity in the regime

of strong gravitational fields. This work involves the analysis of the overlap reduction

function (ORF), a geometrical factor that appears in the expected cross correlation of

signals, for general metric theories of gravity. The ORF characterizes the loss of sensitivity

due to detectors not being co-located or coaligned, and it is an important element in

defining the optimal cross-correlation statistic. It is shown that PTA detection sensitivity

increases for non-transverse gravitational waves. Additionally, the ORFs for a subset of

the NANOGrav PTA are described, and are used to show that sensitivity to vector

and longitudinal modes can increase dramatically for pulsar pairs with small angular
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separations. Implications of these results are discussed.

In the second part of this work, the detection of gravitational-wave bursts in the 10

Hz – 1000 Hz frequency band is considered using ground-based laser interferometers. An

excess power method for conducting unmodeled searches for gravitational-wave bursts is

discussed, and its implementation into a search pipeline is described in detail. The per-

formance of this pipeline is probed using software injections. Also discussed are potential

applications of the ExcessPower pipeline to detector characterization efforts, which aim

to improve interferometric searches by characterizing and mitigating non-Gaussian noise

transients in the detectors.
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Chapter 1

Introduction

“We especially need imagination in science. It is not all
mathematics, nor all logic, but it is somewhat beauty and poetry.”

— Maria Mitchell, Astronomer (1818-1889)

One of the predominant features of matter and its interactions is the interplay between

a field and its source. This is easy to see in Maxwell’s theory of electromagnetism;

Maxwell’s equations describe the interaction between electric and magnetic fields and

their sources.

Many parallels can be drawn between Maxwell’s electromagnetism and Einstein’s

theory of relativity. In fact, the disaccord between the theories of Maxwell and Newton

in the late 19th century was one of the driving forces that led to the development of special

relativity. To motivate the development of special, and consequently general relativity,

it is useful to consider the parallels that can be drawn between Newtonian gravity and

Einstein’s relativity.

For Newton, the stage for all physical dynamics is a three-dimensional Euclidean space.

Although this space is subject to the laws of spatial relativity, time is absolute, viewed

the same by all observers. Using such a framework to describe dynamics in the universe,

the gravitational field is described as a conservative vector field that can be obtained

from a potential function ~F = −m∇φ where m is the mass of a test particle1 in the field.

In the coordinate-free formulation of Newton’s theory, the gravitational potential φ is

related to the mass density ρ by the field equation ∇2φ = −4πGρ, where G is Newton’s

1Test particles are not considered to be sources of the field.
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3gravitational constant. If at every point φ is bounded and ρ vanishes, φ is forced to be

constant in space. It follows that the source of the gravitational field is the mass density

ρ. A field equation therefore relates the field to its source, and characterizes the interplay

between the two.

A simple generalization from Netwon’s theory to Einstein’s is not sensible, because

the stage for physical interactions changes in general relativity. One of the key results

of special relativity is that the laws of physics are equally valid in all inertial reference

frames, and the universality of the speed of light as measured by any observer forces the

relativity of simultaneity : there can be no absolute notion of simultaneity. Events that

are simultaneous in one frame need not be simultaneous in another frame. In other words,

time is not an absolute quantity in Einstein’s universe.

In special relativity, physical events take place on a four-dimensional manifold with a

flat Lorentzian metric; global inertial frames are a canonical feature of spacetime. General

relativity, on the other hand, does not postulate a particular metric a priori. In this sense,

general relativity is not canonically equipped with global inertial reference frames, and

the existence of such frames depends on whether any gravitational field is present [1].

In Newton’s theory of gravity, the source of the gravitational field is the mass density

ρ. In general relativity, matter takes on the analogue matter distribution, and fields (e.g.,

electromagnetic) may contribute to the gravitational field. The source of the gravitational

field is therefore more complex than in Newton’s theory. The object that generalizes

the mass density ρ is called the stress-energy tensor.2 The stress-energy tensor is a

symmetric, rank (0, 2) tensor, and contains all relevant information about mass density,

energy density, momentum density, etc. It is now possible to relate the source of the

gravitational field — the energy momentum tensor — to the field itself, which is dependent

on the curvature of spacetime. The field equation is

Rαβ −
1

2
Rgαβ =

8πG

c4
Tαβ, (1.0.1)

where Rαβ is the Ricci tensor, R is the Ricci scalar (obtained through contraction with

the metric gαβ), G is the gravitational constant, c is the speed of light, and Tαβ is the

2This is also frequently referred to as the energy-momentum or stress-energy-momentum tensor; the

terms are used interchangeably.
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4stress-energy tensor. The left hand side of this equation is often simplified in appearance

with the use of the Einstein tensor, which is defined as Gαβ = Rαβ − 1
2
Rgαβ. As stated

previously, a field equation describes the interaction between a field and its source; it

describes the manner in which the source creates the field. This interdependence lays

down the conceptual framework for the theory of general relativity.

1.1 Gravity and spacetime

The mathematical description of general relativity begins with the notion of coordinates

and distances. Events in general relativity take place on a four-dimensional manifold with

a metric tensor that may or may not be flat. To characterize the geometry taking place

on this manifold, one can define the line element ds2 that provides the distance between

nearby points that are separated by coordinate intervals dxα:

ds2 = gµν(x
α)dxµdxν . (1.1.1)

The metric gµν(x
α) is a function that depends on the spacetime coordinates xα, where α

can take the values {0, 1, 2, 3} (which correspond to a single time and three space coordi-

nates, respectively). The metric completely characterizes the geometry of the manifold.

Other geometric quantities must be generalized from that of flat spacetime to ac-

commodate curvature in a rigorous manner. Vectors can be described as directional

derivatives: for a curve (or world line) xα(t) parameterized by t passing through some

point in the spacetime manifold, the derivative along that curve contains the components

of a four-vector that lies in the tangent space to that point. One can therefore express

the four-vector uα as

uα =
dxα

dt
, (1.1.2)

which not only satisfies the intuitive notion of a vector but also reduces to the defini-

tion used in flat space when the metric is flat. It is also worth pointing out here that

general relativity is invariant under the symmetry group of all all possible coordinate

transformations xα → x
′α(x). Under this gauge symmetry, the metric transforms as

gµν → g
′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ. (1.1.3)
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5

Figure 1: Vectors that are parallel-transported on a curved surface, such as a sphere, return rotated

from their initial position. This leads to a very natural sort of definition for curvature.

1.1.1 Spacetime curvature

It is important to be rigorous in defining spacetime curvature since the human-intuitive

view of curvature comes from imagining two-dimensional objects embedded in a three-

dimensional space. This extrinsic notion of curvature turns out to be problematic for

general relativity, since we are interested in the curvature of the spacetime manifold itself

(which is not necessarily embedded in any higher dimensional space). To think about

curvature in a way that makes sense without embedding, the concept of parallel transport

is used. In a flat plane (or in flat spacetime), a vector that is parallel-transported around

a closed path will always end up at its original position. On a curved surface, such as a

sphere, the parallel-transported vector returns rotated from its initial position. This is

shown in Fig. 1.

This example provides the motivation for a rigorous definition of curvature. Parallel-

transporting vectors along a curve is related to the derivative of a vector field in the

direction of the curve; given some notion of derivative, a vector is parallel-transported if

its derivative along the curve is zero. Curvature is what occurs when successive differen-

tiations on vector fields fail to commute.

To make this mathematically precise, one must define a derivative operator for vector

fields on a manifold. This derivative, called the covariant derivative, is defined as

∇αv
γ =

∂vγ

∂xα
+ Γγαβv

β (1.1.4)
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6where Γγαβ are the connection coefficients (or Christoffel symbol). In terms of the metric,

the Christoffel symbol can be written as

Γγαβ =
1

2
gγδ
(

∂

∂xα
gβδ +

∂

∂xβ
gδα −

∂

∂xδ
gαβ

)
. (1.1.5)

The equation of parallel transport for the components of a vector v along a curve with

tangent vector u is then

uµ∇µv
α = uµ

∂vα

∂xµ
+ Γαµνu

µvν = 0. (1.1.6)

One way to describe curvature is to relate it to a geodesic: a curve whose tangent

vector is parallel-transported along itself. A curve xα(t) with tangent vector u is a geodesic

if u is parallel-transported along itself (u = v), i.e.

uµ∇µu
α = uµ

∂uα

∂xµ
+ Γαµνu

µuν = 0. (1.1.7)

Mathematically, we can quantify curvature with the Riemann curvature tensor, which is

defined by

R δ
αβγ w

γ = − (∇α∇β −∇β∇α)wδ (1.1.8)

for arbitrary w. This tensor completely characterizes the curvature of spacetime. It is

often more useful, however, to work with contracted versions of the curvature tensor that

appear in the Einstein field equations (Eq. (1.0.1)). The Ricci tensor Rαβ is obtained

from two contractions of the Riemann tensor,

Rαβ = R γ
αγβ (1.1.9)

and the Ricci scalar R is simply the trace of the Ricci tensor:

R = gαβRαβ. (1.1.10)

For the study of gravitational radiation (or gravitational waves), one can expand the

Einstein equations around the flat spacetime metric, and use the Riemann tensor to

understand some of the properties of gravitational waves. This is what will be discussed

next.
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71.1.2 Linearized Gravity

When gravity is relatively weak, one can express the spacetime metric gαβ as the flat

Minkowski metric ηαβ along with a small perturbation hαβ (small meaning that Cartesian-

like coordinates |hαβ| << 1 in units where c =1),

gαβ = ηαβ + hαβ, (1.1.11)

where the inverse metric is

gαβ = ηαβ − hαβ. (1.1.12)

Note that in this weak-field regime, although Eq. (1.1.12) specifies the inverse metric,

indices will be raised and lowered with the flat-metric ηαβ.

To understand the gravitational field in the weak-field limit, the Einstein field equa-

tions (Eq. (1.0.1)) must be solved to first order in the metric perturbation hαβ. A few

definitions are needed to proceed. To linear order in hαβ, the Christoffel symbols may be

written as

Γγαβ =
1

2
ηγδ (∂αhβδ + ∂βhδα − ∂δhαβ) (1.1.13)

where we have simplified notation so that ∂/∂xµ = ∂µ. Given the Christoffel symbols,

the linearized Ricci tensor can be written to first order in h as

Rαβ = ∂γΓ
γ
αβ − ∂αΓγγβ

= ∂γ∂βhαγ + ∂γ∂αhβγ −
1

2
∂γ∂γhαβ −

1

2
∂α∂βh

=
1

2
(∂γ∂βhαγ + ∂γ∂αhβγ − ∂γ∂γhαβ − ∂α∂βh) .

(1.1.14)

By combining the Ricci scalar (which is just the trace of Eq. (1.1.14)) with the Ricci

tensor, one can express the Einstein tensor as

Gαβ =
1

2

(
∂γ∂βhαγ + ∂γ∂αhβγ − ∂γ∂γhαβ − ∂α∂βh− ηαβ

(
∂γ∂δhγδ − ∂γ∂γh

))
, (1.1.15)

and the resulting Einstein field equations are

(
∂γ∂βhαγ + ∂γ∂αhβγ − ∂γ∂γhαβ − ∂α∂βh− ηαβ

(
∂γ∂δhγδ − ∂γ∂γh

))
=

16π

c4
Tαβ. (1.1.16)

In principle, one could stop at this point and seek out solutions to the field equations.

However, the form of the equations in Eq. (1.1.16) are not particularly useful. It is helpful
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8to make a few choices that recast field equations into a more intuitive form. The first

choice is to work with the trace-reversed metric, which is defined as

hαβ = hαβ −
1

2
ηαβh. (1.1.17)

With this definition, the field equations take on a much simpler appearance,

−∂γ∂γh̄αβ + ∂γ∂βh̄αγ + ∂γ∂αh̄βγ − ηαβ∂γ∂δh̄γδ =
16πG

c4
Tαβ. (1.1.18)

It is interesting to note that the first term on the left-hand side of Eq. (1.1.18) looks

similar in form to the d’Alembertian wave operator (by definition the d’Alembertian is

� = ∂α∂α).

The second choice made to put the field equations in a more tractable form is to

choose a specific gauge. There is a gauge freedom in general relativity which corre-

sponds to the group of diffeomorphisms, which are (invertible) bijective functions that

map one spacetime manifold to another in a smooth fashion. A complete discussion about

diffeomorphisms and how they relate to gauge freedom goes beyond the scope of this dis-

sertation (see the textbook by Wald, Ref. [1], for a detailed discussion on the topic),

but essentially gauge freedom in linearized gravity means that for some vector field ξα,

coordinates can be chosen so that

hαβ → hαβ + ∂αξβ + ∂βξα, (1.1.19)

or in terms of the trace-reversed metric,

h̄αβ → h̄αβ + (∂αξβ + ∂βξα − ηαβ∂γξγ) . (1.1.20)

Given the form of the field equations in Eq. (1.1.18), the best choice of coordinate trans-

formation is one that will eliminate all terms in the Einstein tensor except those that

look similar to the d’Alembertian wave operator; this will give the field equations an

immediately useful (and somewhat physically intuitive) form.

In practice, this means making a coordinate choice that eliminates the divergence of

the trace-reversed metric. This choice is in fact very similar to the Lorenz gauge choice

made in electromagnetism. Mathematically, this means finding a solution to the equation

∂β∂βξα = −∂βh̄αβ (1.1.21)
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9for ξα, which defines the choice of gauge

∂βh̄αβ = 0. (1.1.22)

This gauge condition is referred to as the Lorenz gauge. With this gauge in place, the

Einstein field equations (1.1.18) simplify dramatically to

∂γ∂γh̄αβ = �h̄αβ =
−16πG

c4
Tαβ. (1.1.23)

In this form it is clear that the solutions to the field equations are wave solutions, where

the stress-energy tensor serves as the source. The waves admitted by this equation are

called gravitational waves, and they propagate at the speed of light c. In the next section,

additional gauge freedom will be used to study the properties of gravitational waves and

their effects on test masses.

1.2 Gravitational waves in the transverse-traceless gauge

To study the propagation of the gravitational waves admitted by Eq. (1.1.23), as well as

the response of test masses to these waves, it is necessary to consider the field equations

far from the source (where the stress-energy tensor vanishes), i.e. where

�h̄αβ = 0. (1.2.1)

To make this problem as simple as possible, one can exploit additional gauge freedom that

has not been used. This closely resembles the gauge freedom seen in electrodynamics. In

that case, the choice of Lorenz gauge — ∂αA
α = 0 — simplifies the equation of motion

(which depends on the source current jβ) obtained from the Maxwell Lagrangian,

∂α
(
∂αAβ − ∂βAα

)
= jβ −→ �Aβ = jβ, (1.2.2)

but there remains additional gauge freedom which allows

Aα −→ Aα − ∂αφ (for �φ = 0). (1.2.3)

The same additional gauge freedom is present in linearized gravity. Before proceeding,

it is interesting to extend the electrodynamics analogy a bit further: when far from the

source current jβ,

�Aβ = 0 (1.2.4)
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10and the additional gauge freedom of Eq. (1.2.3) (which appears via the scalar φ) can be

used to set A0 = 0. When A0 = 0, the Lorenz gauge effectively represents a condition on

transversality:

∂iA
i = 0. (1.2.5)

For linearized gravity, the additional gauge freedom present means that just as in

Eq. (1.2.3) the Lorenz gauge is still valid with another coordinate transformation

xα −→ xα + ξα, (1.2.6)

as long as �ξα = 0. However if �ξα = 0, then the quantity �ξαβ = 0 as well, where

ξαβ = ∂αξβ + ∂βξα − ηαβ∂γξγ. (1.2.7)

But Eq. (1.2.7) is precisely what appeared when making the coordinate transformation in

Eq. (1.1.20), so the functions ξαβ can be subtracted from the six independent components

of h̄αβ (that satisfy �h̄αβ = 0). Because the functions ξαβ depend on the four functions ξα

(and since the functions ξαβ also satisfy �ξαβ = 0), the additional gauge freedom means

that four conditions can be imposed on h̄αβ.

As in the electrodynamic analogue (Eq. (1.2.5)), these conditions can be chosen to

impose transversality; if ξ0 is specified so that the trace h̄ = 0, then h̄αβ = hαβ, and the

remaining three functions ξi(x) can be chosen so that h0i(x) = 0. In the Lorenz gauge

with h̄αβ = hαβ and µ = 0,

∂0h00 + ∂ih0i = 0, (1.2.8)

and with a fixed value h0i = 0,

∂0h00 = 0. (1.2.9)

These choices characterize the transverse-traceless gauge (or TT gage), which can be

summarized mathematically as

h0α = 0, hii = 0, ∂jhij = 0. (1.2.10)

It is worth pointing out that these conditions are not valid near the source, i.e. for the

field equations in Eq. (1.1.23). There is still the freedom to perform a transformation
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11satisfying �ξαβ = 0, but because �h̄αβ 6= 0 the components of h̄αβ cannot be set to zero

as in the TT gauge.

An important solution of the wave equation (1.2.1) is the plane wave solution,

hTTij (xα) = εij(~k)eikαx
α

(1.2.11)

where εij(~k) is the polarization tensor and kα = (ω/c,~k) is the wave vector satisfying

ω/c = |~k|. For a gravitational wave propagating in the z direction, this solution is of the

form

hTTij (x) =




h+ h× 0

h× −h+ 0

0 0 0




ij

cos [ω(t− z/c)], (1.2.12)

where h+ and h× are the two possible gravitational-wave polarizations corresponding to

the metric perturbation’s remaining two degrees of freedom.

1.2.1 The effect of gravitational-waves on matter

A possible gravitational-wave coordinate system is shown in Fig. 2. Given the unit vectors

î, ĵ and k̂ lying along the x, y and z axes (blue arrows in Fig. 2) and the gravitational-wave

coordinate system rotated by the polar and azimuthal angles θ and φ

î
′
= (cos θ cosφ, cos θ sinφ,− sin θ)

ĵ
′
= (− sinφ, cosφ, 0)

k̂
′
= (sin θ cosφ, sin θ sinφ, cos θ),

(1.2.13)

the most general choice of coordinates is chosen by rotating about the gravitational wave’s

propagation axis with respect to the polarization angle ψ:

m̂ = î
′
cosψ + ĵ

′
sinψ

n̂ = −î′ sinφ+ ĵ
′
cosψ

Ω̂ = k̂
′
.

(1.2.14)

The coordinate system defined by î, ĵ and k̂ is related to the coordinate system m̂, n̂

and Ω̂ by the angles θ and φ, and with this coordinate system in place it is possible to

explicity define the polarization tensors.
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Figure 2: Illustration of a possible gravitational-wave coordinate system. The wave propagates in the

direction Ω̂, and the vectors m and n, obtained through rotations of the angle ψ, represent the most

general choice of coordinates.

These are

ε+ = m̂⊗ m̂− n̂⊗ n̂

ε× = m̂⊗ n̂+ n̂⊗ m̂.
(1.2.15)

Their definition will be useful later on when characterizing the response of gravitational-

wave detectors to gravitational waves.

It is worthwhile at this point to describe the manner in which gravitational waves are

physically manifest. The equation of geodesic deviation can be used to study the effect

of a gravitational wave on the relative motion of two freely falling particles. For two

nearby freely falling bodies that are nearly “at rest” in a global coordinate system ηαβ,

with deviation Xα,

d2Xβ

dt2
=
∑

α

R β
α00 X

β, (1.2.16)

and it can be shown that

Rα00β =
1

2

∂hαβ
∂2t

. (1.2.17)
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Figure 3: The effect of a plus-polarized (a) and cross-polarized (b) gravitational wave passing out of

the page on a ring of test masses. Figure from Kalmus [2].

These two independent components of the Riemann tensor correspond to two physical

polarization states for gravitational waves in general relativity. The outcome of this result

is that the relative position of two test masses is measurable; a gravitational wave could

be detected by watching the relative separation of two test masses over time.

Put differently, if a gravitational wave propagates in the Ω̂ = ẑ direction, the metric

(within the TT gauge) takes on the form

ds2 = −dt2 + (1 + h+) dx2 + (1− h×) dy2 + dz2. (1.2.18)

If the gravitational wave is + polarized and two particles are located at positions vi =

(v1, 0, 0) and wi = (w1, 0, 0) then at some instant of time the metric is

ds2 = (1 + h+(t− z)) (v1 − w1)2 (1.2.19)

which means that the proper distance between the particles is

ds ≈ (1 + h+(t− z)) (v1 − w1) . (1.2.20)

The change in proper distance between the particles depends on the amplitude of the

gravitational-wave. This concept forms the basis of gravitational wave detection efforts.
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141.2.2 The production of gravitational waves

In the last section, the effect of gravitational waves on matter was considered in the far-

zone, when the source of gravitational waves is distant. To gain a physical understand-

ing of the sources of gravitational waves and connect far-field solutions of the Einstein

equations to near-field solutions with sources present, solutions to the Einstein equa-

tions (1.0.1) are needed.

In general, it is sufficient to solve the linearized Einstein equations (1.1.23) for a

specified source Tαβ. For an observer who is far away, the metric perturbation due to a

slowly-moving source Tαβ can be written as

h̄αβ(t, ~x) =
4G

c4

∫
Tαβ(t− |~x− ~x′|/c, ~x′)

|~x− ~x′| d3~x′. (1.2.21)

Ultimately we are interested in the sources that generate the radiative gravitational field.

To understand the dynamics of these sources, it is necessary to study both far and near-

field solutions to Eq. (1.2.21).

In the far-field, the distance from the source to the field point r is much greater than

the gravitational-wave wavelength (which is also much larger than the size of the source).

In this case, the quantity |~x−~x′| ' r appearing in Eq. (1.2.21) is approximately constant

over the entire source and we can approximate t − |~x − ~x′|/c ≈ t − r/c over the source.

The metric perturbation can then be written as

h̄αβ(t, ~x) =
4G

c4r

∫
Tαβ(t− r/c, ~x′)d3~x′. (1.2.22)

This can be simplified further using the conservation law ∂αT
αβ = 0. In this case, the

spatial components of the trace-reversed metric perturbation are

h̄ij(t, ~x) ' 2G

c4r

∂2

∂t2

∫
x
′ix
′jT 00(t− r/c, ~x′)d3~x′. (1.2.23)

The solutions to Eq. (1.2.23) are

h̄ij(t, ~x) ' 2G

c4r
Ï ij(t− r/c) (1.2.24)

where we have defined the quadrupole tensor

I ij(t) =

∫
xixjT 00(t− r/c, ~x)d3~x. (1.2.25)
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must be used. For radially traveling waves, where n̂i = xi/r, the far-field solution is

hTTij (t, ~x) ' 2G

c4r
ÏTTij (t− r/c) (1.2.26)

and the quadrupole tensor is

ITTij = PikI
klPlj −

1

2
PijPklI

kl. (1.2.27)

Note that the quadrupole tensor is trace-free as it has been defined above.

In the near-field, the distance between the field point r and the source is much smaller

than the gravitational-wave wavelength. Since the source is also moving slowly, we are in

the Newtonian limit and the Newtonian potential can be used to understand the dynamics

of the source. Ignoring internal stresses to the system and expanding |~x − ~x′| in powers

of 1/r, the Newtonian potential can be written as

Φ(t, ~x) = −G
[
M

r
+
Dix

i

r3
+

3

2

−I ijxixj
r5

+ · · ·
]

(1.2.28)

where

M =

∫
T 00(~x)d3~x

Di =

∫
xiT 00(~x)d2~x

−I ij =

∫ (
xixj − 1

3
r2δij

)
T 00(~x)d3~x.

(1.2.29)

In the near-field, coordinates can be chosen so that the strain is

hTTij (t, ~x) ' 2G

c4r
−̈I TTij (t− r/c) (1.2.30)

which is identical to Eq. (1.2.30).

The significance of the near and far-field solutions is that accelerating masses produce

gravitational waves. Furthermore, gravitational waves have no monopolar or dipolar

components; only objects with a non-zero quadrupole moment (corresponding to the −I
term in Eq. (1.2.28)) will produce gravitational radiation.
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In general, any system with a non-zero time-changing quadrupole moment (ÏTT 6= 0) will

produce gravitational waves. However, the effect of gravitational waves on matter is quite

small, and modern gravitational wave detectors search for waves produced by the most

massive and relativistic sources, which largely correspond to violent astrophysical events.

In this section, we briefly touch on such sources and the types of gravitational waves they

produce.

1.3.1 Continuous sources

Any astrophysical object that is rotating with axial asymmetry will emit gravitational

waves. In the process of emitting gravitational waves, the object loses energy and slows

down. The process of spinning down is quite slow, so the timescale over which gravi-

tational radiation is emitted by the object is much longer than a typical observational

timescale. The object is therefore called a continuous source of gravitational waves.

One of the most important such objects is an asymmetric or wobbling neutron star.

The neutron star could have asymmetry due to precession, “mountains” or deformities

in its crust, unstable fluid modes of oscillation, or other rotational instabilities [3, 4, 5,

6, 7, 8, 9]. If the neutron star is not axisymmetric, it will emit gravitational waves at a

frequency that is twice its rotational frequency. Rotating axial asymmetric neutron stars

are expected to produce gravitational waves with a frequency at the higher end of the

detectable spectrum, f ∼ 1 Hz – 1 kHz.

It is also possible for binary systems to emit continuously if their timescale of orbital

decay is much longer than the observational timescale. More specifically, for a system

to be considered as a continuous source of gravitational waves, its orbital frequency

must remain relatively stable over the observational period. Because of this requirement,

the frequencies of gravitational waves emitted by these systems are dependent upon the

masses of the stars in the binary [7]. For example, the lowest frequency gravitational

waves of ∼ 10−6 Hz emitted by such systems come from supermassive black hole binaries,

while white dwarf binaries will produce gravitational waves in the ∼ 10−3 Hz frequency

band.
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is typically nearly monochromatic, and the signal can be well-modeled. One search that

has been performed by the Initial Laser Interferometer Gravitational-wave Observatory

(introduced in Chapter 5) involved observations of the Crab pulsar, a relatively young

millisecond pulsar. Although no gravitational waves were found (see Abbott et al. 2008

[10]), upper limits indicate that less than 6% of the Crab’s spin-down energy was grav-

itationally radiated. Future searches, with enhanced detectors and increased sensitivity,

may be able to recover signals from the Crab pulsar.

1.3.2 Compact binary coalescence

When two compact objects such as neutron stars or black holes orbit each other, they

lose energy due to the emission of gravitational waves. Over time, their orbit shrinks —

while their frequency increases — until they merge with a characteristic chirp signal. The

resulting black hole is highly deformed and reduces this deformity by emitting ringdown

radiation. The final stages of this process are highly relativistic and the binary emits a

vast amount of gravitational radiation in a short time.

The binaries that are most well-understood, both in terms of their expected waveform

and expected event rate, are neutron star binaries (NS/NS). The existence of such binary

systems has been confirmed through observations of pulsars in the galaxy; one example is

the The Hulse-Taylor binary pulsar, discovered in 1974 [11]. Observations of the Hulse-

Taylor binary (see Fig. 4) show that the system’s orbital decay agrees strongly with

general relativity’s prediction of energy loss due to gravitational radiation (in fact, it won

Hulse and Taylor the Nobel Prize in 1994). Unfortunately, the Hulse-Taylor binary will

not coalesce for ∼ 300 × 106 years, but its existence (along with other more recently

discovered binary pulsars) helps to constrain possible event rates for NS/NS binaries.

Black hole/neutron star binaries (BH/NS) and black hole/black hole (BH/BH) binaries

are another set of potential sources for gravitational wave emission.

As for the case of continuous sources, gravitational waves from coalescing binaries

are typically very well-modeled. Post-Newtonian theory provides detail about the inspi-

ral stage (when the orbit is decaying), and numerical relativity is able to describe the
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Figure 4: The measured orbital decay (red points) of the Hulse-Taylor binary pulsar is shown along

with the prediction from general relativity (blue line). The data is in exceedingly good agreement with

the prediction. Data in figure taken from [12].

late inspiral/merger stages (as the objects coalesce). This allows for matched filtering

techniques to be used to search for gravitational waves from compact binary coalescence.

1.3.3 Sources of gravitational-wave bursts

The sources of transient gravitational waves, also known as “bursts” of gravitational

waves, produce signals that are much shorter in duration than the typical observational

timescale. One the most important sources of gravitational wave bursts is core collapse

of massive stars.

For stars more than ∼ 8M�, core collapse signifies the end of the star’s lifecycle. The

outcome of collapse depends on the mass of the progenitor. Stars with . 8M� will form

white dwarfs, supported by electron degeneracy pressure, at the end of their lives. If in

a binary system, the dwarf could accrete enough matter from a companion to exceed the
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born. Stars that are slightly more massive, & 8M�, will undergo stellar core collapse as

electron degeneracy pressure can no longer counter gravitation. Depending on whether

or not a supernova explosion follows, either a neutron star or black hole is born. Stars

that are even more massive yet (∼ 50M�) can collapse directly to black holes without

producing a supernovae.

Although a spherically symmetric collapse would not result in gravitational radiation,

the collapse of a rotating core causes it to flatten along the axis of rotation. The result-

ing aspherical collapse, as well as subsequent core oscillations, produces short bursts of

gravitational radiation. Additionally, bar-mode instabilities, acoustic instabilities, and

neutrino emission can also produce gravitational radiation.

A detailed gravitational wave signature for any one of these scenarios must be obtained

through numerical models of stellar collapse. Such models do not tend to produce well-

modeled waveforms, because the physical processes underlying collapse are quite complex

and difficult to probe numerically. The rate of supernovae in the galaxy is estimated to

be 1/25 yr−1 – 1/100 yr−1, potentially making gravitational-wave bursts rare.

1.3.4 Stochastic backgrounds

When the gravitational waves from a large number of independent, individually unresolv-

able sources overlap, a background of gravitational radiation is produced. If the many

sources that contribute to this background are characterized by many different random

times and frequencies, the central limit theorem suggests that the sum of the signals at

any given time or frequency is a Gaussian random variable. The background is thus

referred to as a stochastic background.

The sources of a stochastic background of gravitational waves range from cosmological

(those exisiting in the early universe) to astrophysical (referring to recent astrophysical

systems). A relic gravitational-wave background from inflation is expected to exist; other

cosmological sources include cosmic strings and first-order phase transitions in the early

universe. Astrophysical sources of a stochastic gravitational-wave background include

neutron stars, white dwarf binaries and supermassive black hole binaries.



www.manaraa.com

20The stochastic background can be described in terms of its spectrum,

Ωgw(f) =
1

ρc

dρgw

d log f
, (1.3.1)

where dρgw is the energy density of gravitational radiation contained the frequency range

(f, f + ∆f) and ρc is the critical density needed to close the universe,

ρc =
3c2H2

0

8πG
(1.3.2)

where H0 is Hubble’s constant. This spectrum will become important in Chapers 3 and 4

which involve searches for stochastic gravitational-wave backgrounds with pulsar timing

arrays.

1.4 Gravitational-wave detectors

The first gravitational-wave detectors constructed were resonant mass (or bar) detec-

tors that were designed to be oscillated by a passing gravitational wave. The famous

Weber-bar experiment, conducted by Joseph Weber in the 1960s, involved 1.5 ton cylin-

drical aluminum bars that were sensitive to gravitational-waves with a relatively high

frequency (1660 Hz). Although Weber’s experiment did not lead to conclusive evidence

of gravitational waves, it set forth some of the groundwork for modern gravitational-wave

detectors.

Fig. 5 plots sensitivity curves for current and proposed gravitational-wave detectors,

and illustrates the complementary nature of current gravitational-wave searches. The

following subsections briefly describe some of the current and proposed gravitational-

wave detectors.

1.4.1 Pulsar timing arrays

Current gravitational-wave detection efforts encompass a wide rage of potential

gravitational-wave frequencies and sources. At the relatively low-frequency end of the

(detectable) gravitational-wave spectrum (f ∼ 10−9 Hz – 10−7 Hz), pulsar timing arrays

(PTAs) exploit the high-precision timing of millisecond pulsars to search for gravitational

waves.
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Figure 5: Gravitational-wave characteristic strain plotted as a function of gravitational-wave frequency

for various detectors and sources. The anticipated source spectrums are indicated by the shaded regions

below each curve. Note that this figure only illustrates a PTA sensitivity curve for an approximate

combined IPTA data set and not current individual PTAs. Figure produced by Moore et al. [13].

A large-scale coordinated effort is underway across the globe to detect gravitational

waves in the PTA frequency band. The PTAs contributing to this effort include the North

American Nanohertz Observatory for Gravitational Waves (NANOGrav) [14], the Euro-

pean Pulsar Timing Array (EPTA) [15], and the Parkes Pulsar Timing Array (PPTA) [16]

in Australia. Together, these form the International Pulsar Timing Array (IPTA) [17].

Data for the current PTA experiments is collected at a variety of radio telescopes

across the globe. The global nature of collaboration is particularly important for PTA

experiments, because different telescopes probe different parts of the sky. Fig. 6 illustrates

the global distribution of radio telescopes used by the IPTA.

The details surrounding PTAs and how they are used to detect gravitational waves

are discussed in detail in Chapter 2.
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Figure 6: The data used by current PTA experiments is collected at radio telescopes across the globe,

shown in this figure. Figure from the NANOGrav Collaboration.

1.4.2 Ground-based laser interferometers

At the relatively high-frequency end of the detectable gravitational wave spectrum (f ∼
10 Hz – 1 kHz), kilometer-scale ground-based laser interferometers search for gravitational

waves by measuring the differential changes in the positions of test masses at the ends of

interferometer arms. Several ground-based laser interferometers have been constructed

and taken data to search for gravitational waves.

The Laser Interferometer Gravitational-wave Observatory (LIGO) is comprised of two

interferometers — one in Hanford, Washington (denoted as LHO) and one in Livingston,

Louisiana (denoted as LLO) — with 4 km long arms each. A third detector, identical to

the two in the United States, is planned for India.

The LIGO Scientific Collaboration (LSC) consists of the two LIGO detectors LHO

and LLO, the GEO600 detector (a British-German interferometer with 600 m long arms)

and the Virgo detector (a French-Italian interferometer with 3 km long arms). The LSC

has completed several “science runs”, or data taking periods. The S1-S5 science runs

took place from 2002 to 2007. The configuration of the LIGO interferometers at that

time is typically referred to as Initial LIGO.
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detector were upgraded. The enhanced instruments, Enhanced LIGO and Virgo, were

used to complete another science run (S6) which took place from July 2009-October 2010.

The two LIGO detectors, as well as the Virgo detector, are currently being upgraded

for the Advanced LIGO and Advanced Virgo experiments. Advanced LIGO is anticipated

to begin operating shortly after the publication of this dissertation.

The principles underlying gravitational-wave detection with ground-based laser inter-

ferometers will be presented in Chapter 5.

1.4.3 Space-based laser interferometers

Proposed space-based laser interferometers such as the Laser Interferometer Space An-

tenna (LISA) hold the potential to detect gravitational waves in the frequency band

intermediate to the two discussed above, f ∼ 1 mHz – 100 mHz. LISA and other space-

based detectors will not be discussed in detail in this dissertation, but readers may consult

the texts by Saulson [18] and Maggiore [8] for more details.

1.5 Dissertation Summary

The contents of this dissertation are based on my doctoral work, including two published

papers. Chapter 2 introduces pulsar timing arrays and sets the foundation for the next

two chapters. Chaper 3 presents a time-domain implementation of the optimal cross-

correlation statistic for stochastic background searches in pulsar timing array data. Due

to the irregular sampling typical of pulsar timing array data, as well as the use of a

timing model to predict the times-of-arrival of radio pulses, time-domain methods are

better suited for gravitational-wave data analysis of such data. This chapter presents a

derivation of the optimal cross- correlation statistic starting from the likelihood function,

a method to produce simulated stochastic background signals, and a rigorous derivation

of the scaling laws for the signal-to-noise ratio of the cross-correlation statistic in two

relevant pulsar timing array regimes: a weak signal limit where instrumental noise domi-

nates over the gravitational-wave signal at all frequencies, and a second regime where the

gravitational-wave signal dominates at the lowest frequencies.
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the context of alternative theories of gravity. The overlap reduction functions for pulsar

timing arrays are determined and analyzed for metric theories of gravity (theories that

obey the Einstein equivalence principle). It is shown that pulsar timing arrays have

greater sensitivity to non-transverse gravitational waves than to transverse gravitational

waves, a result that has interesting implications for developing gravitational-wave tests of

general relativity. The physical origin of this enhanced sensitivity is discussed, and overlap

reduction functions are calculated for some of the NANOGrav collaboration pulsars. It

is shown that sensitivity to non-transverse polarization modes can increase dramatically

for pulsar pairs with small angular separations.

Starting with Chapter 5, emphasis changes from gravitational-wave detection with

pulsar timing arrays to detection with ground-based laser interferometers. Chapter 5

introduces the Laser Interferometer Gravitational-wave Observatory (LIGO) detectors

and outlines relevant principles of gravitational-wave detection.

In Chapter 6, an excess power statistic is described to conduct searches for

gravitational-wave bursts with LIGO. A data analysis pipeline constructed with the

excess power statistic is applied to real and simulated data sets to determine its ef-

ficiency as a search tool. The excess power statistic turns out not only to be a tool

for gravitational-waves searches, but also for detector characterization efforts which seek

to mitigate problematic non-Gaussian noise transients in the LIGO detectors. Specific

methods for performing these detector characterization tasks are discussed.

Chapter 7 summarizes the work outlined in this dissertation and describes planned

future work.



www.manaraa.com

Part I

Searches for stochastic gravitational

wave backgrounds with pulsar

timing arrays

25



www.manaraa.com

26

Chapter 2

Pulsars as gravitational-wave

detectors

“I switched on the high speed recorder and it came blip.... blip....
blip.... blip.... blip.... Clearly the same family, the same sort of
stuff and that was great, that was really sweet. It finally scotched
the little green men hypothesis cos it’s highly unlikely there’s two
lots of little green men, opposite sides of the universe, both
deciding to signal to a rather inconspicuous planet earth, at the
same time, using a daft technique and a rather common place
frequency. It has to be some new kind of star, not seen before, and
that then cleared the way for us publishing, going public!”

— Jocelyn Bell Burnell, Astronomer

The pulsar is one of the most bizarre and interesting astrophysical objects known to

exist in the universe. First discovered in 1967, pulsars — rapidly rotating neutron stars —

are the most dense objects studied in astronomy that have not collapsed to form a black

hole. Since their discovery, pulsars have been observed and characterized using pulsar

timing experiments, and have given birth to a rich field of astronomy with applications

ranging from the interstellar medium to plasma physics to gravitational-wave astronomy.

To explain how pulsars are used in gravitational-wave searches, it is useful to first

describe some of their basic properties and illuminate the manner in which modern pulsar

timing experiments are conducted. This will be done in the next section. The use of

pulsars in gravitational-wave astronomy will be discussed in Sec. 2.2.
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The first signals detected from a pulsar were discovered in 1967 by Jocelyn Bell-Burnell

and Antony Hewish at Cambridge University [19]. The regularity of these pulses, com-

bined with their distant astrophysical source, initially prompted the discoverers to dub

the signal “LGM-1” (or “Little Green Men”). However, it was soon reasoned that these

signals were originating from rotating neutron stars [20, 21, 22]. Decades of research on

neutron stars has produced some understanding of pulsars and their properties. We will

outline the basic scenario here, but readers are encouraged to consult the texts of Lorimer

and Kramer [23] or Ostlie and Carroll [24] for a much more detailed discussion.

2.1.1 Pulsar formation and evolution

Neutron stars are born in supernovae, at the death of a massive main sequence star. The

type of supernova that occurs depends on the mass of the progenitor. Core-collapse or

type-II supernova occur for the most massive stars; such stars are generally believed to

have masses of M & 8M� – 10M�, although there is some evidence of stars as massive

as 10M�–12M� avoiding supernova [25, 26, 27].

Stars that hold insufficient mass to produce a type-II supernova (M . 8M�) form

white dwarfs at the end of their evolutionary cycle. White dwarfs are supported by

electron degeneracy pressure, which is strong enough to counter the pull due to gravity

on the star. However, there is a limit on how massive a white dwarf can be; if the dwarf

exceeds a mass ∼ 1.4M� (also known as the Chandrasekhar mass), a type-I supernova

can occur [28].

If the progenitor of the supernova is not massive enough to form a black hole, the

remnant surviving the supernova is a rotating compact object composed of neutrons,

with a canonical radius ∼ 10 km, a mass & 1.4M�, and (surface) magnetic fields on the

order 108−1015 Gauss. Neutron stars that are observed to emit electromagnetic radiation

are referred to as pulsars.

The details surrounding the emission process of the pulsar are not completely under-

stood and go beyond the scope of this dissertation (see [22, 29, 30, 31, 32, 23, 24] for

more details), but in a basic model the pulsar contains a strong dipolar magnetic field
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magnetic field varies in space and produces an electric field, which rips charged ions from

the neutron star’s polar regions [24]. These ions are accelerated relativistically and flow

along the magnetic field lines, emitting a continuous spectrum of curvature radiation that

forms a cone [32]. If the cone sweeps across the Earth’s line of sight, the pulsar can be

observed. Pulsars emit at a variety of frequencies [24], including radio-wavelengths that

are observable at Earth via radio telecsopes.

As a result of energy lost due to a combination of electromagnetic radiation and

particle emission [33, 34, 35], the pulsar gradually slows down in its rotation. Along

with the pulsar’s period P , the pulsar spin-down (or Ṗ ) can be determined with high

levels of precision with modern pulsar timing experiments. The relationship between

the pulsar’s period and its derivative provide valuable information about the evolution

of the pulsar. This information can be summarized with the P − Ṗ diagram, shown in

Fig. 7. The P − Ṗ diagram shows two fairly distinct classes of pulsars: isolated pulsars,

represented by single black dots, and pulsars in binary systems, represented by a dot in a

circle. Interestingly, almost all of the MSPs are found in binary systems. Their separate

location and grouping in the P − Ṗ diagram suggests that perhaps MSPs undergo a

different evolutionary process than their slower isolated counterparts, which form the

population of canonical (or typical) pulsars [23].

In fact, this is what is now believed for MSPs. The canonical pulsars are not only

slower (with periods on the order of seconds) but also younger, with larger magnetic

fields. Over the course of their life, as they emit electromagnetic radiation, these pulsars

slowly evolve along lines of constant magnetic field to longer periods until they eventually

land in the “pulsar graveyard” region in the P − Ṗ diagram. The MSPs are older and

also have lower spin-down rates, which means that they are much more stable over time

than pulsars in the canonical population.

Although MSP formation is still being studied in depth, the most favored current pic-

ture for their formation is based on “recycling” the pulsar and involves a binary system.

If a supernova occurs for a star in a binary system, and the binary system is not dis-

rupted (meaning the companion isn’t ablated or ejected in the supernova), the resulting
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Figure 7: The P − Ṗ diagram illustrates the spin evolution for a population of pulsars. Single dots

represent isolated pulsars; dots enclosed in circles correspond to pulsars in binary systems; and those

represented by the star symbol indicate supernovae remnants. The three groups of dashed lines across

the figure represent lines of constant characteristic age, magnetic field and spin-down luminosity. Figure

1.13 in Lorimer and Kramer [23].
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loses energy and spins down until it no longer emits radiation. Because it is in a binary

system, however, the now-quiet pulsar may be able to regain some of its lost spin by

accreting matter from its companion. A massive enough companion will eventually over-

flow its Roche lobe, and accrete matter onto the pulsar. This accretion will also impart

angular momentum that “spins-up” the pulsar. There is also evidence to suggest that

the accretion of matter has the potential to “bury” the pulsar’s intrinsic magnetic fields,

which could explain why MSPs tend to have lower magnetic fields than their canonical

counterparts [36, 37].

Because MSPs are so stable (relative to their younger canonical counterparts) they

are the favored type of pulsar for gravitational-wave experiments. Before discussing the

manner in which MSPs are used for gravitational-wave searches, basic elements of pulsar

timing experiments will be reviewed.

2.1.2 Pulsar timing experiments

At the Earth, radio telescopes record the intensity of the pulsar’s signal as a function

of time. Individual pulsars are actually fairly weak radio sources, and require a process

called folding to create a pulse profile; the folding process involves the coherent addition

of hundreds or thousands of pulses together, and results in an integrated pulse profile for

a pulsar. This process is illustrated in Fig. 8. Integrated pulse profiles are remarkably

stable at a given frequency, despite the variation in individual pulses that comprise them.

The objective in pulsar timing experiments is to obtain the timing residual for the

pulsar, which compares the pulse times-of-arrival (TOAs) to a theoretical timing model

for the pulsar. The steps involved to produce timing residuals go beyond the scope of

this document (see [39] for a more in depth analysis), but in rough detail the steps are as

follows:

1. The pulsar’s period is determined, either through an initial or previous observation.

2. Once the pulsar period is known, data with the correct phase are folded to obtain

an integrated pulse profile.
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2 Pulsars, Observations, and Timing

The properties and demographics of pulsars, as well as pulsar search and timing techniques, are
thoroughly covered in the article by Lorimer in this series [87]. This section will present only an
overview of the topics most important to understanding the application of pulsar observations to
tests of GR.

2.1 Pulsar properties

Radio pulsars were firmly established to be neutron stars by the discovery of the pulsar in the
Crab nebula [120]; its 33-ms period was too fast for a pulsating or rotating white dwarf, leaving a
rotating neutron star as the only surviving model [108, 53]. The 1982 discovery of a 1.5-ms pulsar,
PSR B1937+21 [12], led to the realization that, in addition to the “young” Crab-like pulsars born
in recent supernovae, there exists a separate class of older “millisecond” or “recycled” pulsars,
which have been spun up to faster periods by accretion of matter and angular momentum from
an evolving companion star. (See, for example, [21] and [109] for reviews of the evolution of such
binary systems.) It is precisely these recycled pulsars that form the most valuable resource for
tests of GR.

Figure 1: Top: 100 single pulses from the 253-ms pulsar B0950+08, demonstrating pulse-to-pulse
variability in shape and intensity. Bottom: Cumulative profile for this pulsar over 5 minutes (about
1200 pulses); this approaches the reproducible standard profile. Observations taken with the Green
Bank Telescope [98]. (Stairs, unpublished.)

The exact mechanism by which a pulsar radiates the energy observed as radio pulses is still
a subject of vigorous debate. The basic picture of a misaligned magnetic dipole, with coherent

Living Reviews in Relativity (lrr-2003-5)
http://relativity.livingreviews.org

Figure 8: Individual pulses from the pulsar B0950 + 08 (253 ms) vary considerably in shape and

intensity, but folding them results in a stable pulse profile that acts as a “fingerprint” of sorts for the

pulsar. Figure 1 from Stairs [38].
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4. Additional timing parameters, such as the site-arrival-time and barycentric-arrival-

time are determined and used so that measurements will correspond to an inertial

reference frame.

5. The actual pulse TOAs are compared to arrival times produced by a timing model

for the pulsar. The difference between the actual and expected TOAs defines the

timing residuals.

This process is completed for many different pulsars, often with data from multiple radio

telescopes, and leads to the term pulsar timing array (PTA) which describes this process

for an entire array of pulsars across the sky. Current PTAs are accurate enough to predict

pulse TOAs to within a nanosecond over several years [40, 41, 42].

A wealth of interesting science can be done using these timing residuals, but this

dissertation involves detection efforts for gravitational waves. In the next section we will

explain how the timing residuals are used to perform searches for gravitational waves.

2.2 Gravitational waves and the pulsar signal

The question of how a gravitational wave might effect the radio pulse traveling from a

pulsar to the Earth was first probed in the late 1970s by Sazhin [43] and Detweiler [44].

In this section, we will determine explicitly the effect of the gravitational-wave signal on

the signal from the pulsar, and relate that effect to the response of a PTA.

To begin, it is useful to make some choices surrounding the pulsar-Earth-GW geom-

etry. Suppose that the pulsar is located in the direction of unit vector p̂, pointing from

Earth to the pulsar, and that a gravitational wave propagates in the direction Ω̂ (see

Fig. 9). With this choice of coordinates, the polarization tensors defined in Sec. 1.2.1 of

Chapter 1 can be used to describe the PTA response to gravitational waves.

This description begins with the plane wave expansion, which extends the plane wave

solution of Chapter 1 (Eq. (1.2.11)). In terms of the geometry of Fig. 9, the plane wave
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Figure 9: The pulsar-Earth-GW system, as visualized with the Earth at the origin. The gravitational

wave propagates in the direction of the blue dashed line, and the vectors Ω̂, m and n defined in Sec. 1.2

are shown along with polar and azimuthal angles θ and φ. The unit vector p̂ points from the Earth to

the pulsar, and the angle ψ designates the polarization angle of the gravitational wave. For a stochastic

gravitational wave background, all angles are averaged over many independent sources and ψ can be

chosen to be zero.

expansion can be written as

hij(t,~k) =
∑

A

∫ ∞

−∞
df

∫

S2

dΩe2πi f(t−Ω̂·~k/c)hA(f, Ω̂)εAij(Ω̂) (2.2.1)

where A = {+,×}, f is the gravitational-wave frequency, ~k is the wave vector, hA(f, Ω̂)

is the gravitational-wave amplitude that depends on the wave’s frequency, direction of

propagation and polarization. Note that here we use the notation
∫
S2 dΩ to represent the

integral over the 2-sphere
∫
dθ
∫
dφ, and the hatless Ω appearing in the integrand should

not be confused with the gravitational-wave direction Ω̂.
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hij(t, ẑ) =
∑

A

∫ ∞

−∞
df

∫

S2

dΩe2πi f(t−z/c)hA(f, ẑ)εAij(ẑ)

= hij(t− z/c).
(2.2.2)

The metric corresponding to this perturbation can be written as

gαβ = ηαβ + hαβ(t− z/c)

=




−1 0 0 0

0 1 + h+ h× 0

0 h× 1− h+ 0

0 0 0 1



.

(2.2.3)

If the pulse from a pulsar is propagating in this spacetime background, the physical effect

experienced by the pulse is a redshift:

z(t) =
νp − νe
νe

(2.2.4)

where νp is the pulse’s emitted frequency and νe is the pulse’s observed frequency on the

Earth. The radio pulse from the pulsar must follow a null geodesic. This fact can be used

to determine the gravitational-wave induced redshift in terms of the metric perturbation.

If a vector pα is null in Minkowski space, in the perturbed spacetime the corresponding

null vector kα will be given by

kα = pα − 1

2
ηαβhβγp

γ. (2.2.5)

The flat-spacetime null vector that points from the pulsar to the Earth has components

pα = ν(1, p̂), and these can be used to determine the perturbed null vector’s components:

kα = ν




1

p1(1− h+/2)− p2h×/2

p2(1 + h+/2)− p1h×/2

p3



. (2.2.6)

The geodesic equation for the time component (α = 0) of kα is given by

dk0

dλ
= −Γ0

αβk
αkβ, (2.2.7)
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Γ0
αβ =

1

2
g0δ (∂αgβδ + ∂βgδα − ∂δgαβ) =

1

2
ġαβ

=
1

2




0 0 0 0

0 ḣ+ ḣ× 0

0 ḣ× ḣ+ 0

0 0 0 0




(2.2.8)

where the dot denotes differentiation with respect to time. The geodesic equation thus is

dk0

dλ
= −1

2
ġαβk

αkβ

= −1

2

[
ġ11(k1)2 − ġ22(k2)2

]
− ġ12k

1k2

= −1

2
ḣ+

[
(k1)2 − (k2)2

]
+ ḣ×k

1k2

(2.2.9)

The terms (k1)2 − (k2)2 and k1k2 evaluate to

(k1)2 − (k2)2 = ν2
(
p2

1 − p2
2

)
+O(h) (2.2.10)

and

k1k2 = ν2 (p1p2) +O(h) (2.2.11)

respectively, and using the time component of k0 = ν, the geodesic equation becomes

−dν
dλ

=
1

2
ḣ+ν

2
(
p2

1 − p2
2

)
+ ḣ×ν

2p1p2. (2.2.12)

To turn this result into something integrable, it is necessary write the time derivatives

on the right-hand side of Eq. (2.2.12) in terms of the affine parameter λ. Since hA =

hA(t− z/c),
dhA
dλ

=
∂hA
∂t

dt

dλ
+
∂hA
∂z

dz

dλ
. (2.2.13)

From Eq. (2.2.6), it is clear that dt/dλ = ν and dz/dλ = −ν p3; furthermore ∂hA/∂t =

−∂hA/∂z. With these, Eq. (2.2.13) simplifies to

dhA
dλ

= ν (1 + p3) ḣA. (2.2.14)

Replacing the time derivatives in Eq. (2.2.12) with this result, the geodesic equation

becomes

−1

ν

dν

dλ
=

1

2

p2
1 − p2

2

1 + p3

dh+

dλ
+

p1p2

1 + p3

dh×
dλ

(2.2.15)
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−
∫ λe

λp

1

ν

dν

dλ
dλ = − log ν|λeλp = log (νp/νe)

=
1

2

p2
1 − p2

2

1 + p3

∫ λe

λp

dh+

dλ
dλ+

p1p2

1 + p3

∫ λe

λp

dh×
dλ

dλ

=
1

2

p2
1 − p2

2

1 + p3

∆h+ +
p1p2

1 + p3

∆h×

(2.2.16)

where ∆hA = heA−hpA is the difference between the metric perturbation at the Earth when

the pulse is received, and at the pulsar, when the pulse is emitted. Note that although

the components of kα are also functions of the affine parameter, terms of O(h) have been

neglected. From the definition of redshift, log (νp/νe) = log (1 + z) ≈ z. This means that

the gravitational-wave induced redshift of the radio pulse is

z(t, Ω̂ = ẑ) =
1

2

p2
1 − p2

2

1 + p3

∆h+ +
p1p2

1 + p3

∆h×, (2.2.17)

when the gravitational wave propagates in the Ω̂ = ẑ direction.

In general, the gravitational wave can propagate in any direction and it is necessary

to generalize this expression:

z(t, Ω̂) =
1

2

pipj

1 + Ω̂ · p̂
∆hij (2.2.18)

where ∆hij =
[
hij(te, Ω̂)− hij(tp, Ω̂)

]
and the metric perturbation at each sky location

takes the form

hij(t, Ω̂) =
∑

A

∫ ∞

−∞
e2πif(t−Ω̂·~x) (2.2.19)

These terms are typically referred to as the Earth-term and the pulsar-term, respec-

tively; the Earth-term is correlated for all pulsars (regardless of their distances to the

Earth), while the pulsar-term is not (the amplitude of this term is modulated by the

direction of the pulsar with respect to the gravitational-wave source).

It is often useful to work with the gravitational-wave induced redshift in the frequency

domain. By choosing a particular coordinate system where the Solar System barycenter

is at the origin and the pulsar is some distance L away, we can write

tp = te − L = t− L,

~xe = 0,

~xp = Lp̂

(2.2.20)
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∆hij =

∫ ∞

−∞
(1− e−2πifL(1+Ω̂·p̂))

∑

A

hA(f, Ω̂)εAij, (2.2.21)

and Eq. (2.2.18) can be written in the Fourier domain as [45]

z̃(f, Ω̂) =
(

1− e−2πifL(1+Ω̂·p̂/c)
)∑

A

hA(f, Ω̂)FA(Ω̂) (2.2.22)

where L is the distance to the pulsar from the Earth and we have defined antenna patterns

that describe the detector response to the gravitational wave in terms of the pulsar-Earth-

GW geometry:

FA(Ω̂) =
pi εAij(Ω̂) pj

2
(

1 + Ω̂ · p̂
) . (2.2.23)

As discussed in Sec. 2.1.2, the physical quantity determined at radio telescopes is the

timing residual, or the difference between the actual and expected pulse TOAs at the

Earth. The timing residual can be thought of as the sum of Doppler shifts due to the

gravitational wave, and is thus defined as

r(t) =

∫ t

0

dt′ z(t′). (2.2.24)

It is this simple expression that makes pulsar timing experiments a viable tool for

gravitational-wave astronomy since it is what relates the physically observed quantity

to that which is affected by the gravitational wave.

Since the physical observable is the timing residual and not the redshift, it is useful

to recast Eq. (2.2.22) in terms of the timing residual. Using the plane wave expansion

(Eq. (2.2.1)), the frequency-domain expression for the timing residuals produced by a

gravitational wave is

r̃(f, Ω̂) =
1

2πif

(
1− e−2πifL(1+Ω̂·p̂/c)

)∑

A

hA(f, Ω̂)FA(Ω̂), (2.2.25)

2.3 Pulsar timing arrays and gravitational waves

The PTA gravitational-wave detection efforts discussed for the remainder of this disserta-

tion focus on a particular type of gravitational-wave signal: a stochastic background, first

discussed in Sec. 1.3 (and discussed in additional detail in Allen and Romano, Ref. [46]).
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gravitational waves are supermassive black hole binaries (SMBBHs) that form fol-

lowing the merger of massive galaxies [47, 48, 49]. The superposition of gravita-

tional waves from all SMBBH mergers forms a stochastic background of gravitational

waves [50, 47, 51, 52, 53, 48, 54, 55]. Individual periodic signals [49, 56, 57, 58, 59]

and bursts [60, 61] can also be produced by SMBBH systems. In addition, cosmic

strings [62, 63, 64, 65], first order phase transitions in the early universe [66], and relic

gravitational waves from inflation [67, 68] are potential sources of gravitational waves in

the nanohertz band.

The backgrounds produced by these sources may be characterized by specifying how

the gravitational-wave energy is distributed in frequency:

Ωgw(f) =
1

ρc

dρgw

d log f
, (2.3.1)

where dρgw is the energy density of gravitational radiation contained the frequency range

(f, f + ∆f) and ρc is the critical density needed to close the universe,

ρc =
3c2H2

0

8πG
(2.3.2)

and H0 is Hubble’s constant,

H0 = 100h
km

sMpc
, (2.3.3)

which depends on a dimensionless constant h that accounts for the variation of H0 ap-

pearing in the literature.

The gravitational-wave stochastic background is completely specified by Ωgw(f) if

some assumptions are made:

i That the stochastic background is isotropic (although this condition has been

probed in recent literature; see Mingarelli et al. [69] and Taylor et al. [70] for specific

details);

ii That the stochastic background is unpolarized;

iii That the stochastic background is stationary;
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central limit theorem, so long as there are a large number of stochastic sources

distributed across the sky).

Given these assumptions and the plane-wave expansion, Eq. 2.2.1, the expectation value

of the Fourier amplitudes hA(f, Ω̂) can be expressed as

〈h∗A(f, Ω̂)hA′(f, Ω̂
′)〉 = δ2(Ω̂, Ω̂′)δAA′δ(f − f ′)H(f) (2.3.4)

where δ2(Ω̂, Ω̂′) is the Dirac delta function on the two-sphere, H(f) is some real, positive-

valued function that satisfies H(f) = H(−f) and 〈 , 〉 denote the expectation value.

The function H(f) can be related to Ωgw(f) by differentiating the plane-wave expansion

(Eq. 2.2.1) with respect to time and determining the energy density of gravitational waves,

ρgw =
c2

32πG
〈ḣαβ(t,~k)ḣαβ(t,~k)〉. (2.3.5)

The frequency-dependent quantity that remains on the right-hand side of this expression

determines H(f) explicitly, and the expectation value of the Fourier amplitudes hA(f, Ω̂)

can then be fully expressed as

〈h∗A(f, Ω̂)hA′(f, Ω̂
′)〉 =

3H2
0

32π3
δ2(Ω̂, Ω̂′)δAA′δ(f − f ′)|f |−3Ω̂gw(|f |). (2.3.6)

In the context of gravitational-wave detection, it is useful to relate the expectation value

in Eq. 2.3.6 to the physical observable of PTAs, the timing residual. The stochastic

background produces changes in the timing residuals of individual pulsars that are cor-

related between different pulsars, and Hellings and Downs first showed in 1983 [71] that

the cross-correlation of the timing residuals from two pulsars I and J depends only on

the angular separation ζIJ of the two pulsars:

〈r̃∗I (f)r̃J(f ′)〉 =
H2

0

16π4
δ(f − f ′)|f |−5Ωgw(|f |)χIJ(ζIJ), (2.3.7)

where χIJ(ζIJ) is the Hellings-Downs curve (sometimes called the Hellings-Downs coeffi-

cient) defined by

χIJ(ζIJ) =
3

2

[
1

3
+

1− cos ζIJ
2

[
ln

(
1− cos ζIJ

2

)
− 1

6

]]
+

1

2
δIJ . (2.3.8)
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Figure 10: The Hellings and Downs curve, above, shows that the expected correlation χIJ for a pair

of pulsars I and J depends only on their angular separation ζIJ .

This is illustrated in Fig. 10, which plots the Hellings-Downs curve as a function of

pulsar angular separation. The pulsar term in Eq. (2.2.25), proportional to e−2πifL(1+Ω̂·p̂),

contributes to the expectation value in Eq. (2.3.7) only in the case of the same pulsar

(i.e., when I = J), and averages to zero for different pulsars.

In many cases it is useful to refer not to Ωgw(f) but instead to the dimensionless

gravitational wave amplitude Agw (at reference frequency f1yr = yr−1) which appears in

the expression for the characteristic strain

hc(f) = Agw

(
f

f1yr

)α
. (2.3.9)

The spectral index α depends on the astrophysical source of the background. For example,

a stochastic background produced by supermassive black hole binary systems has α =

−2/3 [47, 48]. The amplitude Agw is related to the strain spectral density Sh(f) of the

gravitational-wave background via:

Sh(f) =
h2
c(f)

f
. (2.3.10)
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Sh(f) =
3H2

0

2π2

Ωgw(f)

f 3
, (2.3.11)

Ωgw(f) =
2π2

3H2
0

A2
gwf

2

(
f

f1yr

)2α

. (2.3.12)

These expressions will be useful in the next chapter, which introduces the optimal-cross

correlation statistic for PTAs in the time-domain.
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Chapter 3

Optimal Strategies for Stochastic

GW Detection with PTAs

“Life is not easy for any of us. But what of that? We must have
perseverance and above all confidence in ourselves. We must
believe that we are gifted for something, and that this thing, at
whatever cost, must be attained.”

— Marie Curie, Physicist, Two-time Nobel Laureate

A number of data analysis techniques have been developed and implemented to search

for isotropic stochastic backgrounds of gravitational waves in PTA data [44, 72, 73, 74,

75, 45, 76, 77, 78, 40, 79, 41, 58, 80, 81, 82]. More recently, these techniques have been

generalized to searches for anisotropic backgrounds [69, 70, 83, 84]. Additionally, a range

of data analysis methods have been developed to search for individual periodic sources

that stand out over the stochastic background [49, 56, 57, 85, 59, 86, 87, 88, 89, 90, 91,

92, 93], bursts [94, 95, 96, 97, 98], and signals of unknown form [99].

In this chapter, we develop a practical time-domain implementation of the optimal

cross-correlation statistic [45] that can be used to search for isotropic stochastic back-

grounds. Readers may wish to consult Chapter 2 to review the effect of a gravitational

wave on the pulsar-Earth-GW system, and the expected cross-correlations in the times-

of-arrival of pulses from different pulsars arising from a stochastic background of gravi-

tational waves.

In Section 3.1, we develop the formalism needed to implement the search for a stochas-

tic background, including the timing model, and derive the optimal cross-correlation
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simulated stochastic background signals into PTA data, and in Section 3.3, we describe

the scaling laws that govern the expected signal-to-noise ratio of the cross-correlation

statistic. We conclude in Section 3.4 with a discussion of the practicality of implementing

the statistics introduced in this chapter for gravitational-wave searches. We work in units

where c = G = 1.

3.1 The optimal cross-correlation statistic

3.1.1 Timing Model

In pulsar timing experiments the quantities that are directly measured are the times-of-

arrival (TOAs) of radio pulses emitted from pulsars. These TOAs contain many terms of

known functional form, including intrinsic pulsar parameters (pulsar period, spin-down,

etc.), along with stochastic processes such as radiometer noise, pulse phase jitter, and

possibly red noise either from interstellar medium (ISM) effects, intrinsic pulsar noise,

and, potentially, a gravitational wave background.

Suppose that the TOAs for a pulsar are given by

tobs = tdet(ξtrue) + n, (3.1.1)

where tobs are the NTOA observed TOAs, tdet are the deterministic modeled TOAs pa-

rameterized by Npar timing model parameters ξtrue, and n is the noise time series in the

measurement which is assumed to be Gaussian with covariance matrix given by

N = 〈nnT 〉 = Nwhite + Nred (3.1.2)

where the NTOA×NTOA matrtices Nwhite and Nred are the contributions to the covariance

matrix from the white and red noise processes, respectively. We will discuss the exact

form of this covariance matrix in the next section. Assuming that estimates of the true

timing model parameters ξest exist (either from information gained when discovering the

pulsar or from past timing observations), we can form the pre-fit timing residuals as

δtpre = tobs − tdet(ξest) = tdet(ξtrue) + n− tdet(ξest). (3.1.3)
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parameters are correct to some linear offset ξest = ξtrue+δξ, for which the pre-fit residuals

become

δtpre = tdet(ξtrue)− tdet(ξtrue + δξ) + n. (3.1.4)

Expanding this solution around the true timing model parameters, we obtain

δtpre = −∂tdet

∂ξ

∣∣∣∣
ξ=ξtrue

δξ + n +O(δξ2)

≈ −∂tdet

∂ξ

∣∣∣∣
ξ=ξtrue

δξ + n

= Mδξ + n,

(3.1.5)

where M is an NTOA×Npar matrix, commonly referred to as the design matrix [100, 101].

Here we have assumed that our initial estimate of the model parameters is sufficiently

close to the true values so that we can approximate this as a linear system of equations

in δξ. It is customary in standard pulsar timing analysis to obtain the best fit δξ values

through a generalized least-squares minimization of the pre-fit residuals. The function

that we seek to minimize is (see [39])

χ2 =
1

2
(δtpre −Mδξ)TN−1(δtpre −Mδξ). (3.1.6)

Minimizing this function with respect to the parameter offsets δξ results in

δξbest = −
(
MTN−1M

)−1
MTN−1δtpre. (3.1.7)

The post-fit residuals are then given by

δtpost ≡ δtpre −Mδξbest = Rδtpre, (3.1.8)

where

R = I−M
(
MTN−1M

)−1
MTN−1 (3.1.9)

is a an NTOA×NTOA oblique projection matrix that transforms pre-fit to post-fit residuals,

and I is the identity matrix. All of the information about any noise source or stochastic

gravitational-wave background is encoded in N. However, in most cases we have no

a priori knowledge of this covariance matrix and therefore assume that it is given by
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i }), where σi is the uncertainty of the ith TOA. Previous work [102] has

used an iterative method to estimate the covariance matrix of the residuals and apply a

generalized least squares fit. For this work we will only work with residuals that have

been created using a weighted least squares fit. It should be noted that in standard pulsar

timing packages such as tempo2 [39] this process must be iterated. In other words, the

pre-fit residuals are formed with an initial guess of the parameters, and the chi-squared is

then minimized to produce best estimates of the parameters. This may not be a good fit,

however, as we have assumed that the pre-fit residuals are linear in the parameter offsets.

Consequently, we form new parameter estimates from the best fit parameter offsets and

iterate until the fit converges, with the reduced chi-squared serving as the goodness-of-fit

parameter. For this reason, we must ensure that our timing model fit has converged prior

to any gravitational-wave analysis.

3.1.2 Derivation of the optimal statistic

Likelihood function for a PTA

Much of the discussion in this section follows closely that of [82], with additional details

included here. We begin by assuming that our PTA consists of M pulsars, each with some

intrinsic noise nI(t). Henceforth uppercase latin indices will label a pulsar and lowercase

latin indices will label a particular TOA. Under the assumption that all intrinsic pulsar

noise is Gaussian, we can write the full likelihood function for the PTA as

p(n|~θ) =
1√

det(2πΣn)
exp

(
−1

2
nTΣ−1

n n

)
, (3.1.10)

where now we are using the full PTA noise time series that is just a concatenated length

MNTOA column vector

n =




n1

n2

...

nM



, (3.1.11)
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terize the noise. The covariance matrix for the noise is the block matrix

Σn =




N1 X12 . . . X1M

X21 N2 . . . X2M

...
...

. . .
...

XM1 XM2 . . . NM



, (3.1.12)

where

NI = 〈nInTI 〉, (3.1.13)

XIJ = 〈nInTJ 〉
∣∣
I 6=J , (3.1.14)

are the auto-covariance and cross-covariance matrices, respectively, for each set of noise

vectors.

In general the autocorrelation matrices are defined via the Wiener–Khinchin theorem

as

NI = 〈nInTI 〉ij =

∫ ∞

0

dfe2πifτijPI(f)

+ FIWI +Q2
II

(3.1.15)

where τij = |ti − tj|, FI and QI are white noise parameters for pulsar I (usually denoted

as EFAC and EQUAD, respectively), I is the identity matrix, and PI(f) is a red noise

power spectrum

PI(f) = P int
I (f) + Pg(f) (3.1.16)

where

P int
I (f) =

A2
I

12π2

(
f

f1yr

)2αI

f−3 (3.1.17)

is the intrinsic red noise in the pulsar parameterized by amplitude AI and spectral index

αI , and

Pg(f) =
A2

gw

12π2

(
f

f1yr

)2α

f−3 (3.1.18)

is the gravitational-wave background spectrum parameterized by the strain amplitude Agw

and spectral index α. In other words, the auto-covariance matrix of the noise in pulsar I

consists of intrinsic white noise parameterized by {FI ,QI} and red noise parameterized
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label because they are common to all pulsars.

Similarly, the cross-covariance matrices are given by

XIJ = 〈nInTJ 〉ij = χIJ

∫ ∞

0

df e2πifτijPg(f) (3.1.19)

where χIJ are the Hellings and Downs coefficients for pulsar pair I, J defined in Eq. (2.3.8).

We now write the likelihood function for the timing residuals using Eqs. 3.1.5 and

3.1.10 as

p(δt|~θ, δξ) =
exp

(
−1

2
(δt−Mδξ)TΣ−1

n (δt−Mδξ)
)

√
det(2πΣn)

, (3.1.20)

where δt and δξ are defined in an identical manner as n as the concatenated vector or

residuals and timing parameters for each pulsar, respectively. Note that here we use

δt instead of δtpre since this process can be thought of as another step in the iterative

process of timing (where the post-fit residuals are formed from the previous set of pre-fit

residuals); instead of minimizing chi-squared using W as the noise covariance, we now use

the full noise covariance matrix Σn and the full PTA dataset to maximize the likelihood.

In [81] it was shown that this likelihood can be maximized1 analytically over the timing

model parameters to give

p(δt|~θ) =
exp

(
−1

2
δtTG(GTΣnG)−1GT δt

)
√

det(2πΣn)
, (3.1.21)

where GI is an NTOA × (NTOA − Npar) matrix. The matrix GT
I spans the null space of

MI and will project the data onto a subspace orthogonal to the linearized timing model.

The full PTA G-matrix is then

G =




G1 0 . . . 0

0 G2 . . . 0

...
...

. . .
...

0 0 . . . GM



. (3.1.22)

1In [81], the authors actually marginalize the likelihood function over the pulsar timing parameters;

however, when using uniform priors the resulting likelihood after maximizing or marginalizing only differs

by a factor of det(MTΣnM), so the data dependent part of the likelihood remains the same.
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rI = GT
I δtI (3.1.23)

PI = GT
I NIGI (3.1.24)

SIJ = GT
I XIJGJ (3.1.25)

Σ = GTΣnG, (3.1.26)

with the likelihood function written as

p(r|~θ) =
1√

det(2πΣn)
exp

(
−1

2
rTΣ−1r

)
. (3.1.27)

Time-Domain Optimal Statistic

In [45] the authors presented the optimal cross-correlation statistic in both the frequency

and time domains, with a focus on the frequency-domain implementation. The non-

stationarity that arises from the timing model fit (Eq. (3.1.9)), along with the irregular

sampling that is typical of realistic PTA data sets, however, make frequency-domain

techniques unsuitable for PTA gravitational-wave data analysis. Therefore in this chapter

we will focus on the time-domain implementation of the cross-correlation statistic. In [45]

the time-domain derivation was done by constructing the likelihood ratio of a model that

contained a stochastic gravitational-wave background and intrinsic noise to a model that

contained only intrinsic noise. It was assumed that the amplitude of the intrinsic noise

is much larger than the amplitude of the gravitational-wave background, and thus can

be safely ignored in the auto-covariance matrices of the residuals. One can then perform

an expansion of the log-likelihood ratio in powers of a small order parameter taken to

represent the amplitude of the background. This assumption can lead to a significant

bias in the recovered amplitude of the gravitational-wave background if the background

is sufficiently large.

Fortunately it is possible to carry out a nearly identical derivation that takes into

account a potential non-negligible contribution of the stochastic background to the auto-

covariance terms. In [82] it was shown that it is possible to expand the covariance matrix

Σ in a Taylor series expansion in the Hellings and Downs coefficients (as opposed to
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function. The log of this likelihood function can be written as

ln p(r|~θ) ≈ −1

2

[ M∑

I=1

(
tr ln PI + rTI P−1

I rI
)
−
∑

IJ

rTI P−1
J SIJP

−1
J rJ

]
(3.1.28)

where
∑

IJ =
∑M

I=1

∑M
J<I is a sum over all unique pulsar pairs. Let us now assume that

we have done a single pulsar noise analysis [81, 103] on each pulsar so that we know PI ,

and consider the following log-likelihood ratio

ln Λ = ln p(r|~θgw)− ln p(r|~θnoise). (3.1.29)

Here ~θgw are the parameters for a model with a spatially correlated2 gravitational-wave

background component along with uncorrelated red and white noise components, which

include the gravitational-wave background present in the pulsar term, ISM noise, ra-

diometer noise, jitter noise, etc. The parameters ~θnoise are for a model with only spatially

uncorrelated noise components. We treat the auto-covariance of each pulsar as a known

measured quantity of the PTA data after the aforementioned noise analysis has been

done. In this case, if we fix the spectral index to, say, the one corresponding to SMBBH

backgrounds with a spectral index α = −2/3, the only free parameter is the amplitude

of the gravitational-wave background. Evaluating this log-likelihood ratio we have

ln Λ =
A2

gw

2

∑

IJ

rTI P−1
J S̃IJP

−1
J rJ , (3.1.30)

where we have used the amplitude-independent cross-correlation matrix S̃IJ defined by

A2
gwS̃IJ = 〈rIrTJ 〉 = SIJ . (3.1.31)

Notice that all terms that only include the auto-covariance matrices are cancelled by

the noise model likelihood function. Note also that this expression is nearly identical

to Eq. (75) of [45] with the caveat that now we are dealing exclusively with post-fit

quantities and have allowed for a non-negligible contribution from the gravitational-wave

background in the auto-covariance matrices. From Eq. (3.1.30) we define the optimal

2By spatially correlated we mean that the correlation is parameterized by the Hellings and Downs

curve.
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Â2 =

∑
IJ rTI P−1

I S̃IJP
−1
J rJ

∑
IJ tr

[
P−1
I S̃IJP

−1
J S̃JI

] , (3.1.32)

where the normalization factor

N ≡
(∑

IJ

tr
[
P−1
I S̃IJP

−1
J S̃JI

])−1

(3.1.33)

is chosen so that on average 〈Â2〉 = A2
gw. This immediately follows from the observation

that 〈∑

IJ

rTI P−1
I S̃IJP

−1
J rJ

〉
=
∑

IJ

tr
[
P−1
I S̃IJP

−1
J SJI

]

= A2
gw

∑

IJ

tr
[
P−1
I S̃IJP

−1
J S̃JI

]
,

(3.1.34)

where Eq. (3.1.31) was used in the second line.

In the absence of a cross-correlated signal (or if the signal is weak) the expectation

value of Â2 vanishes and its standard deviation is [45]

σ0 =

(∑

IJ

tr
[
P−1
I S̃IJP

−1
J S̃JI

])−1/2

, (3.1.35)

so if in a particular realization we measure a value of the optimal statistic, the signal-to-

noise ratio (SNR) for the power in the cross-correlations for that realization is

ρ̂ =
Â2

σ0

=

∑
IJ rTI P−1

I S̃IJP
−1
J rJ(∑

IJ tr
[
P−1
I S̃IJP

−1
J S̃JI

])1/2
. (3.1.36)

with an expectation value over all realizations of

〈ρ〉 = A2
gw

(∑

IJ

tr
[
P−1
I S̃IJP

−1
J S̃JI

])1/2

. (3.1.37)

Note that this definition of the SNR measures the confidence (in standard deviations)

with which we can reject the null hypothesis that there are no spatially correlated signals

in our data. To clarify this a bit further we outline a standard frequentist hypothesis

detection procedure:

1. Measure the optimal statistic value, Â2 of Eq. (3.1.32), for our data set.
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thresh|Agw = 0), that is, the probability that our

measurement of the optimal statistic, Â2, is greater than some threshold value of

the statistic, Â2
thresh, assuming that the null hypothesis, Agw = 0, is true.

3. If the aforementioned probability (sometimes called the p-value) is less than some

value (this value is set to be a tolerable yet problem specific false-alarm probability

(FAP)) then a detection is claimed.

Typically Â2
thresh is given by

α =

∫ Â2
thresh

−∞
dÂ2p(Â2|Agw = 0), (3.1.38)

where α = 1 − FAP and p(Â2|Agw = 0) is the probability distribution function of

the optimal statistic given the null hypothesis. To a sufficiently good approximation,

p(Â2|Agw = 0) can be described by a Gaussian distribution with zero mean and variance

given by σ2
0 (Eq. (3.1.35)), thus the probability p(Â2 > Â2

thresh|Agw = 0) can be expressed

in terms of standard deviations away from the mean. For example, if the Â2 that we

measure is 3 standard deviations (i.e. 3-sigma) away from the mean (0 in this case) then

this corresponds to a FAP of ∼0.003 meaning that we can rule out the null hypothesis

with ∼99.7% confidence. Returning to Eq. (3.1.36) we see that the typical frequentist

detection procedure mentioned above is contained in this definition of SNR. If we measure

an SNR of 3, this carries the same meaning as the FAP above.

Figure 11 shows a histogram of the optimal statistic Eq. (3.1.32) in 104 simulations

for PTA observations of M = 36 pulsars, with root-mean-squares (RMSs) σ = 100 ns,

for an observational time T = 5 years, and a cadence c = 20 yr−1. The black line

shows the distribution of the statistic in the absence of a signal, and the gray curve

shows the distribution in the presence of a signal with amplitude Agw = 10−14 (using the

methods described below in Section 3.2). The standard deviation of the distribution in

the absence of a signal is σ0 = 1.08× 10−29. As shown in the figure, in the absence of a

signal the distribution is not quite Gaussian, but using the true cumulative distribution

of the simulations and the 3-σ Gaussian distribution threshold gives a FAP of ∼ 0.006.

The optimal statistic in Eq. (3.1.32) has also been used to analyze the data sets

produced for the International PTA Mock Data Challenge. In this challenge, the optimal
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amplitudes were then compared to those from a first-order likelihood method (described

in [82]). The amplitudes recovered using the optimal statistic were consistent with the

first-order likelihood methods at the 95% level or better. Readers are encouraged to

consult [68] for more details regarding the Mock Data Challenge and the results obtained

using the optimal statistic.
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Â2 [×10−28]
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p(Â2|Agw = 10−14)

Figure 11: Histogram of the optimal statistic Eq. (3.1.32) in 104 simulations for a PTA consisting

of M = 36 pulsars, all with RMSs σ = 100 ns, an observational time T = 5 years, and a cadence

c = 20 yr−1. We show the distribution of the statistic in the absence of a signal (black line), and the

distribution in the presence of a signal with amplitude Agw = 10−14 (gray line). The standard deviation

of the distribution in the absence of a signal is σ0 = 1.08× 10−29.

3.2 Simulated signals

In this section we describe a software injection procedure that can be used to produce

simulated stochastic background signals in PTA data. As we have shown, if a stochastic

gravitational-wave background is present, the cross-correlation of timing residuals is given
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〈r̃∗I (f)r̃J(f ′)〉 =
H2

0

16π4
δ(f − f ′)|f |−5Ωgw(f)χIJ . (3.2.1)

In the frequency domain it is possible to express the timing residuals as

rI(f) = c(f)
∑

J

HIJwJ(f), (3.2.2)

where wI(f) = xI(f) + iyI(f) is a complex zero-mean white noise process, c(f) is a

real function that contains information about the spectral index and amplitude of the

gravitational-wave spectrum (but does not depend on the pulsar pair), and HIJ is a

matrix that linearly combines the timing residuals in such a way as to simulate the

expected spatial correlations in the signal so that the Hellings and Downs coefficients are

recovered.

If the processes xI and yI are zero-mean unit-variance processes, i.e.

〈xI(f)〉 = 0, 〈yI(f)〉 = 0 (3.2.3)

and

〈x∗I(f)xI(f
′)〉 = 1, 〈y∗I (f)yI(f

′)〉 = 1 (3.2.4)

then wI(f) satisfies

〈w∗I (f)wJ(f ′)〉 =
2

T
δ(f − f ′)δIJ , (3.2.5)

where T is the length of observations, and we can use Eq. (3.2.1) to find c(f) and HIJ .

Taking the ensemble average of Eq. (3.2.2) it is easy to show that

〈r̃∗I (f)r̃J(f ′)〉 =
2

T
c(f)c(f ′)

∑

K

HIKHKJδ(f − f ′), (3.2.6)

which implies that

c2(f)
∑

K

HIKHKJ =
TH2

0

32π4
|f |−5Ωgw(f)χIJ . (3.2.7)

In matrix notation the equation above can be written as

c2(f)HHT =
TH2

0

32π4
|f |−5Ωgw(f)χ. (3.2.8)

Relating the functions of frequency on either side of Eq. (3.2.8), we readily identify the

function c(f) to be

c(f) =

[
TH2

0

32π4
Ωgw(f)|f |−5

]1/2

, (3.2.9)
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HHT = χ (3.2.10)

which allows us to determine H given χ via a Cholesky decomposition.

To construct simulated timing residuals one can: (1) start with M random complex

frequency series wI(f), where M is the number of pulsars, (2) multiply these by c(f),

(3) find the Hellings and Downs coefficients for all pulsar pairs and construct the matrix

χ, (4) perform a Cholesky decomposition of χ to find H, and (5) linearly combine the

frequency series via Eq. (3.2.2) to find rI(f) for each pulsar. Finally, after inverse Fourier

transforming the gravitational-wave residuals, they can be added to real or simulated

TOA data that contains additional uncorrelated white and red noise components.

3.3 Scaling Laws for the Optimal Cross-correlation statistic

In [104] the authors considered a simple scenario where pulsar timing residuals have just

two noise components, a gravitational-wave red noise piece and a white-noise piece, which

are the same for all pulsars in the PTA, namely

PI(f) = Pg(f) + 2σ2∆t = bf−γ + 2σ2∆t. (3.3.1)

Here all the frequency independent constants in Eq. (3.1.18) have been absorbed into the

amplitude b, the index γ = 3 − 2α (recall that we are using one-sided power spectra in

this chapter, in contrast to [104]), and the white noise RMS is denoted by σ.

In [104] it was shown that the SNR of the optimal cross-correlation scales in three

different ways depending on the relative sizes of the gravitational-wave and white-noise

components. Specifically the authors found scaling laws for the SNR in

(i) a weak signal regime where the white noise component of Eq. (3.3.1) is larger than

the gravitational wave piece (2σ2
I∆t� bf−γ at all relevant frequencies),

(ii) the opposite strong signal limit, where 2σ2
I∆t � bf−γ at all relevant frequencies,

which turns out to be irrelevant for pulsar timing experiments, and,
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spectrum dominates at low frequencies, and the white noise dominates at high

frequencies.

Additionally, they found that the latter regime is likely already relevant to current pulsar

timing experiments. In this section we will review the scaling laws for the optimal statistic,

and introduce an improved derivation of the scaling law for the intermediate regime.

To derive the scaling laws we begin with the expression for the expected SNR of the

cross-correlation statistic,

〈ρ〉 = A2
gw

(∑

IJ

tr
[
P−1
I S̃IJP

−1
J S̃JI

])1/2

, (3.3.2)

which can be written in the frequency domain as [45]

〈ρ〉 =

(
2T
∑

IJ

χ2
IJ

∫ fH

fL

df
P2
g (f)

PI(f)PJ(f)

)1/2

. (3.3.3)

Since we are assuming that all pulsars have the same noise characteristics we can write

〈ρ〉 =

(∑

IJ

χ2
IJ

)1/2(
2T

∫ fH

fL

df
b2f−2γ

(bf−γ + 2σ2∆t)2

)1/2

. (3.3.4)

In the weak signal regime, where 2σ2
I∆t � bf−γ for all frequencies of interest, i.e.,

f ∈ [fL, fH ], the SNR is well approximated by

〈ρ〉 ≈
(∑

IJ

χ2
IJ

)1/2
bcT γ

2σ2
√
γ − 1/2

, (3.3.5)

where c = 1/∆t is the cadence, fL = 1/T and fH >> fL.

In the intermediate regime we cannot use this approximation because at low frequen-

cies the power in the gravitational-wave backround is larger than the white noise level.

Note that this happens when bT γ > 2σ2∆t, and the condition on the white noise RMS is

σ <
A

πfα1yr

√
cT γ

24
. (3.3.6)

For pulsar timing experiment durations of T = 5 yr, cadence of c = 20 yr−1, a background

with amplitude A = 10−15, and a spectral index like the one we expect for the SMBBH

background (γ = 13/3), the pulsar timing array is in the weak signal limit only if the
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pulsars that are currently timed with better precisions than that (see, for example, [41]).

In this case the integral in Eq. (3.3.4) must evaluated generally. To do this, we write

the integral as ∫ fH

fL

df F (f) =

∫ fH

0

df F (f)−
∫ fL

0

df F (f) (3.3.7)

where for convenience we have written

F (f) =
bf−2γ

(bf−γ + 2σ2∆t)2 . (3.3.8)

The integrals on the right hand side of Eq. (3.3.7) have analytic solutions in terms of

ordinary hypergeometric functions. To proceed, we evaluate the integral of F (f) over a

generic interval [0, f∗] which yields

∫ f∗

0

dfF (f) =
f∗
γ

[
1

1 + 2σ2∆t

bf−γ∗

+ (γ − 1)G

(−2σ2∆t

bf−γ∗

)]
, (3.3.9)

where G(x) = 2F1 (1, γ−1, 1 + γ−1, x). We can probe this solution in the context of

Eq. (3.3.7) by replacing f∗ with fH or fL.

For the second integral on the right hand side of Eq. (3.3.7) where f∗ = fL = 1/T , we

have (2σ2∆t)/(bf−γL ) � 1 and the hypergeometric function can be approximated to be

unity

2F1

(
1, γ−1, 1 + γ−1,

−2σ2∆t

bf−γL

)
≈ 1.

This simplifies Eq. (3.3.9) greatly, and the integral is easily evaluated as

∫ fL

0

df F (f) ≈ 1

T
. (3.3.10)

To evaluate the first integral in Eq. (3.3.7), we consider the case when f∗ = fH in

Eq. (3.3.9). In this case, since (2σ2∆t)/(bf−γH )� 1, the integral can be approximated as

∫ fH

0

df F (f) ≈ fH
γ

[
bf−γH

2σ2∆t
+ (γ − 1)G

(−2σ2∆t

bf−γH

)]
, (3.3.11)

We can then use standard identities relating the hypergeometric function to inverses of

their arguments (see, for example, Eq. (15.8.2) in [105]). Using these identities along with
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∫ fH

0

df F (f) ≈ fH
γ

{
bf−γH

2σ2∆t
+ (γ − 1) Γ(γ−1 − 1)Γ(2− γ−1)Γ(1 + γ−1)

×
[
bf−γH

2σ2∆t

Γ(2− γ−1)−1

Γ(γ−1)2 2F1

(
1, 1− γ−1, 2− γ−1;

−bf−γH
2σ2∆t

)

− 1

Γ(γ−1)

(
bf−γH

2σ2∆t

)1/γ

2F1

(
γ−1, 0, γ−1;

−bf−γH
2σ2∆t

)]}
. (3.3.12)

Since bf−γH /2σ2∆t � 1 both hypergeometric functions can be well approximated by

unity. Additionally, since bf−γH /2σ2∆t �
(
bf−γH /2σ2∆t

)1/γ
for γ > 1, the last term in

Eq. (3.3.12) dominates and the expression can be simplified to

∫ fH

0

df F (f) ≈ κ(γ)

(
b

2σ2∆t

)1/γ

(3.3.13)

with

κ(γ) = (1− γ−1)
π/γ

sin (π/γ)
. (3.3.14)

Putting the results of Eq. (3.3.10) and Eq. (3.3.13) together, we arrive at the solution

to the original problem posed in Eq. (3.3.7):

∫ fH

fL

df F (f) ≈ κ(γ)

(
b

2σ2∆t

)(1/γ)

− 1

T
. (3.3.15)

In terms of the cadence c = 1/∆t the average value of the SNR is therefore given by

〈ρ〉 ≈
(∑

IJ

χ2
IJ

)1/2 [
2T

(
κ(γ)

(
bc

2σ2

)(1/γ)

− 1

T

)]1/2

. (3.3.16)

At late times,

〈ρ〉 ≈
(∑

IJ

χ2
IJ

)1/2 [
2Tκ(γ)

(
bc

2σ2

)(1/γ)
]1/2

∝M

(
cA2

gw

2σ2

)1/(2γ)

T 1/2.

(3.3.17)

In [104] the authors approximated the integral in a less accurate (albeit more peda-

gogical) way: they found the frequency fr = (bc/2σ2)1/γ at which the gravitational wave

red noise equals the white noise, and assumed the integral was gravitational wave domi-

nated at frequencies lower than fr, and white noise dominated at frequencies higher than

fr. The integrals then become trivial. The result is the same as Eq. (3.3.16), but with

a different value of the coefficient κ which was found to be κ′ = 2γ/(2γ − 1). In the
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Figure 12: Average SNR versus time in years for PTA with 20 pulsars timed with a precision of

σ = 50 ns and a gravitational-wave background produced by SMBBHs (γ = 13/3) with an amplitude

Agw = 10−15. The gray curve shows the SNR computed numerically using Eq. (3.3.2). The dotted curve

shows SNR in the weak-signal limit, Eq. (3.3.5). The dashed-dot curve shows the SNR in the intermediate

regime at late times, Eq. (3.3.17). The dashed curve shows the SNR calculated using Eq. (3.3.16).

approximation the integrand for the SNR is always over-estimated and the value of κ′ is

larger than what we have calculated for κ in this chapter.

Figure 12 shows the average SNR versus time in years for PTA with 20 pulsars timed

with a presicion of σ = 50 ns and a gravitational-wave background produced by SMBBHs

(γ = 13/3) with an amplitude Agw = 10−15. The gray curve shows the SNR computed nu-

merically in the time domain using Eq. (3.3.2). For the timing model we have subtracted

out a quadratic—i.e., we have fitted out a quadratic with the R projection matrices in

the time domain. The dotted curve shows the average SNR as computed in the weak-

signal limit using Eq. (3.3.5). The dashed-dot curve shows the SNR in the intermediate
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the SNR calculated using Eq. (3.3.16). At very early times the approximation is not

valid: the first term in the square root is smaller than 1/T so the SNR is imaginary. At

later times the predicted SNR is in excellent agreement with the time-domain numerical

calculation. Note the remarkable accuracy with which the low frequency cutoff fL = 1/T

approximates the effect of quadratic subtraction.

3.4 Summary

In this chapter, we have presented a time-domain implementation of the optimal cross-

correlation statistic for stochastic gravitational-wave background searches using PTA

data, originally presented in [45]. The derivation and implementation described here

extends that of [45] by taking the timing model into account in a natural and statisti-

cally well-motivated way by including the linear timing model directly into the likelihood

function, allowing for analytic maximization of the timing model parameters. The time-

domain implementation also allows one to fully model the noise and naturally deal with

non-stationarities and irregular sampling of the data, which cannot be modeled in the

frequency domain.

An alternative approach for analyzing PTA data for stochastic gravitational-wave

backgrounds is to use Bayesian inference, as described in [77, 40, 82, 106, 107]. In the

Bayesian approach, one constructs the posterior probability distributions for the noise

and gravitational-wave signal parameters via Bayes’ theorem by specifying the likelihood

function for the data given a set of model gravitational-wave and noise parameters and

a prior distribution on the model parameters. By marginalizing over the model param-

eters, one also constructs the Bayesian evidence for various models, which allow for the

construction of Bayes factors (ratio of Bayesian evidence) to determine which model is

favored by the data.

While we believe that a Bayesian approach to the detection problem for stochas-

tic backgrounds is preferred and indeed recommended, the frequentist cross-correlation

statistic presented here has several advantages over the Bayesian approach. Firstly, the

optimal statistic approach is computationally inexpensive as it involves only a single
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explore a very large dimensional space leading to millions of likelihood evaluations. For

current data sets, the optimal statistic can be evaluated in seconds while the full Bayesian

approach can take weeks to run on a super computer.

Furthermore, the SNR as defined in this work is a good approximation to the Bayes

factor comparing a model for a correlated gravitational-wave background to a model for

an uncorrelated intrinsic red noise source. Thus the computationally inexpensive optimal

statistic has proven invaluable in large scale simulations and projections of detector sensi-

tivity as it allows us to test many different signal models and pulsar observation scenarios

with relative ease, while full Bayesian simulations on this scale are unfeasible. In addition,

the relationship between the the optimal statistic SNR and the Bayes factors affords an

analytically tractable environment from which to construct various scaling relations as

shown in Figure 12.

The optimal statistic does have two major drawbacks that make it less desirable as

a production-level detection statistic compared to the Bayes factor. Firstly, the point

estimate of the amplitude of the gravitational-wave background depends on our ability to

accurately model the total autocorrelated power for each pulsar. Typically this is done

by modeling the noise for each pulsar independently and then including the maximum

likelihood values in the auto-covariance matrices of the optimal statistic. If the signal

is loud and the data does not contain any intrinsic red noise then this method is fairly

robust and does not significantly bias results. However, if the signal is weak or there

is other intrinsic red noise then this method will lead to biases. In low SNR scenarios

the red noise due to the stochastic background may not be large enough to detect in

an individual pulsar and will thus not enter the auto-covariance matrices used in the

optimal statistic. This will lead to an inconsistency in the optimal statistic where it will

still be able to detect cross-correlated power, but the point estimate of the amplitude will

be biased low because the auto-covariance terms (from our single pulsar noise analysis)

indicate that the red noise is very weak.

This problem does not arise in Bayesian analyses because the intrinsic pulsar noise and

the stochastic background parameters are modeled simultaneously. This problem could be
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including a correlated gravitational-wave background component. These noise estimates

(which will include a common gravitational-wave background term in the auto-covariance)

could then be input to the optimal statistic.

Despite these drawbacks, the optimal cross-correlation statistic serves as a proxy for

a full Bayesian search when performing computationally-intensive simulations and will

also serve as a very useful cross-check when making detection statements on future PTA

data.

3.5 Relation to Demorest et al. Cross-Correlation Statistic

Here we show that the optimal statistic, although derived in a different manner, is iden-

tical to the cross-correlation statistic presented in [41]. In the notation used in this work,

the cross-correlation coefficients can be written as

ρIJ =
rTI P−1

I ŜIJP
−1
J rJ

tr
[
P−1
I ŜIJP

−1
J ŜJI

] , (3.5.1)

where ŜIJ is defined so that A2
gwχIJ ŜIJ = SIJ . The uncertainty on the correlation

coefficients is

σIJ =
(

tr
[
P−1
I ŜIJP

−1
J ŜJI

])−1/2

. (3.5.2)

With these expressions we now have an estimate of the cross-correlation coefficients along

with their uncertainty for each pulsar pair. Notice that only the spectral shape of the

gravitational wave background is assumed. To determine an estimate of the gravitational

wave background amplitude, the following chi-squared is minimized

χ2 =
∑

IJ

(
ρIJ − A2

gwχ
2
IJ

σIJ

)2

. (3.5.3)

The resulting best fit gravitational wave amplitude is

Â2
gw =

∑

IJ

ρIJχIJ
σ2
IJ

/∑

IJ

χ2
IJ

σ2
IJ

, (3.5.4)

with variance

σ2 =

(∑

IJ

χ2
IJ

σ2
IJ

)−1

. (3.5.5)



www.manaraa.com

62By using Eqs. 3.5.1 and 3.5.2 and by noting that χIJ ŜIJ = S̃IJ , we obtain

Â2
gw =

∑
IJ rTI P−1

I S̃IJP
−1
J rJ

∑
IJ tr

[
P−1
I S̃IJP

−1
J S̃JI

] , (3.5.6)

which is identical to Eq. (3.1.32).
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Chapter 4

Testing General Relativity with

Pulsar Timing Arrays

“You look at science (or at least talk of it) as some sort of
demoralising invention of man, something apart from real life,
and which must be cautiously guarded and kept separate from
everyday existence. But science and everyday life cannot and
should not be separated.”

— Rosalind Franklin, chemist and x-ray crystallographer

General relativity is among the most successful theories of physics in the 20th century,

passing all current weak-field, slow motion tests with flying colors. Progress in cosmology

and high energy physics over the course of the last 50 years, however, has brought with it

questions that may be unanswerable in the context of general relativity. The accelerated

expansion of the universe, the dark matter problem, and inflation have led some authors

to re-examine general relativity and attempt to modify it to explain some of these puzzles.

Additionally, the incompatibility between general relativity and quantum field theory may

be an indication that modifications to general relativity are necessary.

A number of alternative theories of gravity have been proposed to address some of

these problems. Those which satisfy the Einstein Equivalence Principle are called metric

theories of gravity. In these theories, the only gravitational fields that may influence

matter are the components of the metric tensor gµν . Additional fields play the role of

generating spacetime curvature. Metric theories are grouped broadly into several cate-

gories: scalar tensor theories, in which a dynamical scalar field φ is present in addition to
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which contain a dynamic gravitational four-vector field in addition to the metric (see

Refs. [114, 117, 118, 116, 119]); and bimetric theories, which are characterized by “prior”

geometry contained in dynamical scalar, vector or tensor fields (see Refs. [114, 116, 120]).

In a metric theory of gravity, the six independent components of the Riemann tensor

provide up to six possible gravitational wave (GW) polarization states, four more than

those allowed in general relativity. Detection of any extra GW polarization states would

be fatal for general relativity. A non-detection could be used put constraints on the

parameters of alternative theories of gravity.

Previous work on stochastic backgrounds of gravitational waves in the context of

alternative theories of gravity has shown that three ground-based interferometers are

sufficient to disentangle the polarization content of a general metric theory of gravity [121].

For pulsar timing arrays the form of the correlation between pulsar pairs as a function of

pulsar pair angular separation depends on the polarization content of the theory [122].

Additionally it has been shown that pulsar timing arrays have a greater sensitivity to

longitudinal and vector polarization modes than to transverse modes [122, 123].

It is also possible to investigate the problem of stochastic GW detection using PTAs

in the context of the optimal statistic. In this chapter, the expected cross-correlations

for pulsar timing arrays are determined for stochastic backgrounds of GWs for any met-

ric theory of gravity. These cross-correlations are proportional to the so-called overlap

reduction function, a function that characterizes the PTA response to a GW given the

Earth-pulsar-GW geometry. It is the behavior of this function that describes the physical

origin of the increased sensitivity to scalar-longitudinal and vector polarization modes.

This chapter is broken down as follows: In Section 4.1, the gravitational-wave induced

redshift is determined for polarizations outside of general relativity. This will closely

mirror the derivation of the redshift induced by relativistic gravitational waves, which

was done in Section 2.2 of Chapter 2, although a slightly different sign convention is used

in defining the redshift.

In Section 4.2 the optimal cross-correlation filter is written by maximizing the signal

to noise for a pulsar pair, and the overlap reduction function for GWs of any metric theory



www.manaraa.com

65of gravity is expressed. In Section 4.3 the effect of GWs of various polarizations on the

pulsar-Earth-GW system is probed, and the physical origin of the increased sensitivity

to longitudinal and shear modes elucidated. This effect is most easily understood in

the frequency domain. In Section 4.4, the form of the overlap reduction function for

transverse vs. non-transverse GWs is discussed. The results of this analysis indicate that

for the scalar-longitudinal and vector (shear) modes, the overlap reduction functions are

frequency dependent in the ranges of frequencies and distances relevant to pulsar timing.

This is not the case for the transverse tensor and breathing modes. In Section 4.5,

overlap reduction functions are numerically determined for the a subset of NANOGrav

pulsars. The resulting values of the overlap reduction function for non-transverse GWs

show that sensitivity to the scalar-longitudinal and vector (shear) modes increases by

at least an order of magnitude for nearby pulsar pairs for vector modes, and about four

orders of magnitude for the longitudinal mode. Results from this chapter are summarized

in Section 4.6. As in the last chapter, work is done in units where the speed of light c = 1.

Fig. 15 plots the antenna patterns for the various GW polarization modes in a system

where the GW’s direction of propagation is fixed and the pulsar’s position is varied (see

Appendix 4.A, Eqns. (4.A.20), (4.A.26), (4.A.24) and (4.A.12) for details), as is usually

done in the literature.

In general relativity, for the frequency and distance ranges appropriate to pulsar tim-

ing experiments (i.e. for f � 1/L), the overlap reduction function Γ(f) approaches a

constant which is only a function of the angular separation between the two pulsars. This

constant is proportional to the value of the Hellings-Downs curve for the angle between

the pulsars [71, 45]. We will see that for longitudinal modes and for tensor modes the

overlap reduction function is frequency dependent, even for f � 1/L, and is consider-

ably larger than for the transverse modes. This indicates an increased sensitivity to such

modes. To understand the physical origin of the increased sensitivity we first discuss the

effect of GWs in the more simple case of a single pulsar-Earth baseline.
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Figure 13: Pulsar positions are given with respect to the Solar System barycenter (located at the

origin). Here θ and φ are the typical polar and azimuthal angles (as projected from the position of

pulsar 1), and pulsar 1 and pulsar 2 are separated by angle ξ. A gravitational wave, characterized by

polarization angle ψ, propagates along the Ω̂ direction.

4.1 Detecting gravitational waves with a pulsar timing array

The radio pulses from pulsars arrive at our radio telescopes at very steady rates. Pulsar

timing experiments exploit this regularity. Fluctuations in the time of arrival of radio

pulses, after all known effects have been accounted for, might be due to the presence of

a GW background. If a GW is present the signal from the pulsar can be red-shifted (or

blue-shifted). For a GW propagating in the direction Ω̂, the redshift of signals from a

pulsar in the direction p̂ is given by E q. (2.2.18)

z(t, Ω̂) =
p̂ip̂j

2
(

1 + Ω̂ · p̂
) [hij(tp, Ω̂)− hij(te, Ω̂)] (4.1.1)

where hij is the metric perturbation and tp, te represent the times the pulse was emitted

at the pulsar and the time received at the Solar System barycenter, and we have defined

z(t, Ω̂) =
νe − νp
νp

. (4.1.2)

Note that this is the opposite of the sign convention normally used in the literature [44].

Modified gravity theories extend the possible polarization modes of GWs present in gen-



www.manaraa.com

67

Figure 14: Motion of test masses in response to GWs of the six polarization modes. The plus (+),

cross (×), and scalar-breathing (b) mode GWs are transverse, while the two vector modes (x, y) and

the scalar-longitudinal (l) mode GWs are non-transverse. Figure reproduced from Nishizawa et al. [121]

with permission.

eral relativity – the plus (+) and cross (×) modes– to a maximum of six possible modes.

For the two pulsar–Earth system shown in Fig. 13, the GW coordinate system is given

by

Ω̂ = (sin θ cosφ, sin θ sinφ, cos θ)

m̂ = (sinφ,− cosφ, 0)

n̂ = (cos θ cosφ, cos θ sinφ,− sin θ)

(4.1.3)

where, relative to [121], we have fixed the GW polarization angle ψ = −π/2 to agree with

the conventions in [46]. From (4.1.3), the GW polarization tensors can be constructed

[124, 122, 121, 125, 123]

ε+ij = m̂⊗ m̂− n̂⊗ n̂, ε×ij = m̂⊗ n̂+ n̂⊗ m̂

εbij = m̂⊗ m̂+ n̂⊗ n̂, εlij = Ω̂⊗ Ω̂

εxij = m̂⊗ Ω̂ + Ω̂⊗ m̂, εyij = n̂⊗ Ω̂ + Ω̂⊗ n̂

(4.1.4)

where ⊗ is the tensor product and Ω̂ is the direction of GW propagation. Here, x and y

correspond to the vector (spin-1) polarization modes while b and l correspond to the scalar
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modes are characterized by transverse GW propagation, while the longitudinal and vector

(or shear) modes are non-transverse in nature (see Fig. 14).

Defining the antenna patterns as

FA(Ω̂) = εAij(Ω̂)
p̂ip̂j

2(1 + Ω̂ · p̂)
, (4.1.5)

we can define the Fourier transform of (4.1.1) as [122, 45, 125]

z̃(f, Ω̂) =
(
e−2πifL(1+Ω̂·p̂) − 1

)∑

A

h̃A(f, Ω̂)FA(Ω̂) (4.1.6)

where the sum is over all possible GW polarizations: A = +,×, x, y, b, l, and L is the

distance to the pulsar.

The actual quantity measured in pulsar timing experiments is the timing residual,

which is defined as the difference between the actual and expected time of arrival (TOA)

of a pulse:

R(t) = TOA actual − TOA expected. (4.1.7)

The expected TOA for a pulse is modeled and includes daily and yearly motion of the

Earth, the position and proper motion of the pulsar, motion about a binary companion

(if applicable), etc. The timing residual can be obtained by integrating the redshift in

time [44].

In Fig. 15 we plot the antenna patterns for the various GW polarization modes in

a system where the GW’s direction of propagation is fixed and the pulsar’s position is

varied (see Appendix 4.A, Eqns. (4.A.20), (4.A.26), (4.A.24) and (4.A.12) for details), as

is usually done in the literature.

4.2 GW detection statistic

In this section we introduce the optimal cross correlation statistic [46, 45] for stochastic

background searches. The optimal cross-correlation statistic involves the calculation of

the overlap reduction function, a geometrical factor that characterizes the loss of sensi-

tivity due to detectors not being co-located or aligned. We will show how the overlap
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(a) (b)

(c) (d)

Figure 15: Antenna patterns (4.1.5) for plus/cross (a), breathing (b), vector-x/vector-y (c), and longi-

tudinal (d) polarization modes. Note that the cross and vector-y modes are identical to plus and vector-x,

respectively, but rotated by 45 degrees and thus do not appear separately here. In this figure, the GW

propagates in the positive z-direction with the Earth at the origin, and the antenna pattern depends on

the pulsar’s direction, specified by polar angle θ and azimuthal angle φp. Exact expressions correspond-

ing to each figure may be found in Appendix 4.A: (4.A.20) for the plus mode, (4.A.26) for the breathing

mode, (4.A.24) for the vector-x mode, and (4.A.12) for the longitudinal mode. Note that fixing the

GW propagation direction while allowing the pulsar position to change is analogous to fixing the pulsar

position while allowing the direction of GW propagation to change (there is an inherent degeneracy in

the GW polarization angle and the pulsar’s azimuthal angle φp).
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General Relativity) of Allen and Romano [46].

The plane wave expansion for a GW perturbation propagating in the direction Ω̂ is

given by [46]

hij(t, ~x) =
∑

A

∫ ∞

−∞
df

∫

S2

dΩe2πif(t−Ω̂·~x)hA(f, Ω̂)εAij(Ω̂) (4.2.1)

where i, j are spatial indices, the sum is over all six polarization states, and the Fourier

amplitudes hA(f, Ω̂) are complex functions satisfying hA(−f, Ω̂) = h∗A(f, Ω̂). A stochastic

background of GWs is produced by a large number of weak, independent, unresolvable

sources. The energy density of this background per unit logarithmic frequency is given

by

Ωgw(f) =
1

ρcritical

dρgw

d ln f
(4.2.2)

where dρgw is the energy density of the gravitational waves and ρcritical is the critical

energy density required to close the universe,

ρcritical =
3H2

0

8πG
(4.2.3)

where H0 is the Hubble constant.

The characteristic strain spectrum, hc(f), is typically given a power-law dependence

on frequency so that

hc(f) = A

(
f

yr−1

)α
. (4.2.4)

It may also be expressed in terms of the energy density of the background per unit

logarithmic frequency, Ωgw(|f |):

h2
c(f) =

3H2
0

2π2

1

f 2
Ωgw(|f |). (4.2.5)

For an isotropic stochastic background of GWs, the signal appears in the data as

correlated noise between measurements from different pulsars. The ith data set is of the

form

si(t) = zi(t) + ni(t) (4.2.6)

where zi(t) corresponds to the unknown GW signal and ni(t) to noise (assumed in this

case to be stationary and Gaussian). Because the signal is assumed to be much smaller
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properties in the frequency domain as

〈ñi(f)〉 = 0

〈ñ∗i (f)ñj(f
′)〉 =

1

2
δ(f − f ′)Pi(|f |)

(4.2.7)

where we have introduced the one-sided noise power spectrum Pi(|f |).
The cross-correlation statistic is defined as

S =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′si(t)sj(t

′)Q(t− t′) (4.2.8)

where Q(t− t′) is the filter function. The optimal filter is determined by maximizing the

expected signal-to-noise ratio

SNR =
µ

σ
. (4.2.9)

Here µ is the mean 〈S〉 and σ is the square root of the variance
√
〈S2〉 − 〈S〉2.

In the frequency domain (4.2.8) becomes

S =

∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′)s̃∗i (f)s̃j(f

′)Q̃(f ′), (4.2.10)

and the mean µ is

µ =

∫ ∞

−∞
df

∫ ∞

−∞
df ′ δT (f − f ′)〈z̃∗i (f)z̃j(f

′)〉Q̃(f ′) (4.2.11)

where δT is the finite time approximation to the delta function

δT (f) =
sin πft

πf
.

The assumption that the background is unpolarized, isotropic, and stationary implies

that the expectation value of the Fourier amplitudes hA(f, Ω̂) must satisfy [46, 45]

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 =

3H2
0

32π3
δ2(Ω̂, Ω̂′)δAA′ × δ(f − f ′)|f |−3Ωgw(|f |) (4.2.12)

where δ2(Ω̂, Ω̂′) is the covariant Dirac delta function on the two-sphere. With the demand

(4.2.12) in place, the expectation value of the signals zi(f) may be written as

〈z̃∗i (f)z̃j(f
′)〉 =

3H2
0

32π3

1

β
δ(f − f ′)|f |−3 × Ωgw(|f |)Γ(|f |).
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Γ(|f |) = β
∑

A

∫

S2

dΩ (e2πifLi(1+Ω̂·p̂i) − 1)× (e−2πifLj(1+Ω̂·p̂j) − 1)FA
i (Ω̂)FA

j (Ω̂)

where the sum is over all possible GW polarizations, and the exponential phase terms

correspond to the pulsar term in the time domain.

The optimal filter is given by [46, 45]

Q̃(f) ∝ Ωgw(f)Γ(f)

|f |3Pi(f)Pj(f)
, (4.2.13)

where Pi(f) and Pj(f) are the power spectra for the ith and jth pulsar redshift time

series that are being cross-correlated (see Eq. 4.2.8).

In general relativity, for the frequency and distance ranges appropriate to pulsar tim-

ing experiments (i.e. for f � 1/L), the overlap reduction function Γ(f) approaches a

constant which is only a function of the angular separation between the two pulsars. This

constant is proportional to the value of the Hellings-Downs curve for the angle between

the pulsars [71, 45]. We will see that for longitudinal modes and for tensor modes the

overlap reduction function remains frequency dependent, even for f � 1/L, and is con-

siderably larger than for the transverse modes. This indicates an increased sensitivity to

such modes. To understand the physical origin of the increased sensitivity we first discuss

the effect of GWs in the more simple case of a single pulsar-Earth baseline.

4.3 GW induced redshift on the pulsar-Earth system

In this section we will study the redshifts induced by GWs of different polarizations on

the pulsar-Earth system. From (4.1.6), the redshift induced by this GW may be written

as

z̃A(f, Ω̂) =
(
e−2πifL(1+Ω̂·p̂) − 1

) pipj

2(1 + Ω̂ · p̂)
εAij(Ω̂)h̃A. (4.3.1)

The factor of 1/2(1 + Ω̂ · p̂) comes from the relationship between the affine parameter λ

and time t (see Eqs. (2.2.13) and (4.A.9)), and h̃A = h̃A(f, Ω̂).

In the region where the GW direction, Ω̂ and the pulsar direction, p̂ are anti-parallel,

Eq. (4.3.1) appears to become singular due to the 1 + Ω̂ · p̂ term in the denominator (note

that the derivative of hA with respect to the affine parameter vanishes in this limit; see



www.manaraa.com

73Eq. (4.A.9)). There is in fact no divergence in the redshift induced. In this regime the

exponential can be Taylor expanded and the 1 + Ω̂ · p̂ term in the denominator cancels.

A Taylor expansion of Eq. (4.3.1) can be performed in two cases. In the first, when

fL � 1, the metric perturbation is the same at the pulsar and at the Earth. This case

is often referred to as the long wavelength limit. In the second, when

1 + Ω̂ · p̂� 1

fL
,

the pulse’s direction of propagation and the GW are nearly parallel (i.e. the GW is

coming from a direction near the pulsar). In this case the metric perturbation at the

pulsar when the pulse is emitted, and on Earth when the pulse is received, are also nearly

the same. This is often described in the literature in terms of the pulse “surfing” the

gravitational wave.

The surfing description, combined with Eq. (4.1.1), might lead one to incorrectly

conclude that the effect of the GW should cancel in this case because the metric per-

turbations at the Earth and the pulsar are the same, despite the divergent 1/(1 + Ω̂ · p̂)
term in the redshift. In fact, a delicate cancellation occurs with the divergent term in the

denominator which is only manifest in the frequency domain. Let the pulse direction and

the gravitational wave direction be nearly parallel so that Ω̂ · p̂ = −1 + δ, where δ � 1.

Then as in [45, 125] we obtain

z̃A(f, Ω̂) ∼ −πifLpipjεAijh̃A. (4.3.2)

The redshift is proportional to fL, but for finite δ increases only to the point where the

argument of the exponential in (4.3.1) can no longer be Taylor expanded, at which point

it becomes an oscillatory function of fL. Whether the redshift is finite in the δ → 0 limit

depends on the projection term pipjεAijhA. As we will see, the vanishing contribution

for the tensor modes of general relativity occurs solely because of the transverse nature

of these waves, and is unrelated to the “surfing” effect. For longitudinal modes the

projection term does not vanish, and the increase in sensitivity to such modes originates

from GWs that come from directions near the pulsar. To better understand this, we will

look at the behavior of the redshifts induced by GWs of various modes.
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z̃l(f, Ω̂) =
cos2 θ

2(1 + cos θ)
(e−2πifL(1+cos θ) − 1)h̃l, (4.3.3)

while the redshift for a plus mode GW perturbation is

z̃+(f, Ω̂) =
− sin2 θ

2(1 + cos θ)
(e−2πifL(1+cos θ) − 1)h̃+. (4.3.4)

Here we note that the geometrical factor in the redshift for the transverse breathing

mode differs from (4.3.4) only by a sign, and our analysis of (4.3.4) applies equally to the

breathing mode.

In Fig. 16 we plot the geometrical and phase factor |z̃(f, Ω̂)/h̃| for both the +-mode

and the longitudinal mode. We plot these for a value of fL in the long wavelength limit

(fL = 10−2), and for a value in the regime of pulsar timing experiments (fL = 10). In

the regime of pulsar timing experiments the sensitivity is largest for GW directions near

the pulsar θ ≈ π for both polarizations. Although we do not show it here the same is true

for all other polarization modes. In the long wavelength limit, fL� 1, the pulsar-Earth

system is most sensitive to +-mode GWs coming from the equator, and longitudinal GWs

from the poles.

As discussed above, these redshifts appear to become singular when θ → π, but the

pulsar term may be Taylor expanded. Let θ = π − δ, where δ � 1. Then

z̃l(f, Ω̂) ∼ πifL(1− δ2)h̃l (4.3.5)

for the longitudinal case, while

z̃+(f, Ω̂) ∼ πifLδ2h̃+ (4.3.6)

for the plus mode. In the limit as δ → 0, z̃+ vanishes while z̃l becomes proportional to

fL. The vanishing redshift of z̃+ is therefore due to the transverse nature of the mode,

and does not occur for z̃l, even though in both cases the pulse is “surfing” the GW. In

the time domain, in the θ ≈ π region, the redshift for both modes goes as

zl,+(t, Ω̂) ∝ Lḣl,+. (4.3.7)

One may readily identify the right hand side of (4.3.7) as a velocity. The interpretation

of this result is that, in this limit, the redshift is proportional to the relative velocity of
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Figure 16: (color online) Plots of |z̃(f, Ω̂)/h̃| for the +-mode (dashed blue) and the longitudinal mode

(solid red). We show these for fL = 10−2 (a), a value of fL in the long wavelength limit, and (b)

fL = 10, a value of fL typical of pulsar timing experiments. In the regime of pulsar timing experiments

the sensitivity is largest for GW directions near the pulsar θ ≈ π for both polarizations. In the longth

wavelength limit, fL � 1, the pulsar-Earth system is most sensitive to +-mode GWs coming from the

equator, and longitudinal GWs from the poles.
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limit is approximately equal and opposite to the velocity of the Earth when the pulse is

received.

An identical analysis for the shear GW modes produces analogous results. Starting

from (4.1.6), the redshift for the vector-y mode goes as

z̃y(f, Ω̂) = − cos θ sin θ

(1 + cos θ)
(e−2πifL(1+cos θ) − 1)hy. (4.3.8)

The small δ expansion yields

z̃y(f, Ω̂) ∼ −2πifLδ

(
1− δ2

2

)
hy. (4.3.9)

Relative to the longitudinal mode the redshift of vector modes is smaller by a factor

of δ and vanishes as δ → 0, but it is still larger than the transverse modes by a factor of

1/δ.

The same behavior is not present in other sky locations. If the GW propagates

perpendicular to the pulsar-Earth line (θ = π/2 + δ), then up to second order in δ the

redshifts

z̃l =
δ2

2(1− δ)
(
e−2πifL(1−δ) − 1

)
(longitudinal) (4.3.10)

z̃+ =
− (1− δ2)

2(1− δ)
(
e−2πifL(1−δ) − 1

)
(plus) (4.3.11)

z̃y =
δ (1− δ2/2)

(1− δ)
(
e−2πifL(1−δ) − 1

)
(shear) (4.3.12)

are obtained. In this case for small δ the exponential cannot be expanded unless fL� 1.

For this sky location the redshift is always an oscillatory function of fL. The pulse comes

across different phases of the GW as it propagates toward Earth.

To summarize, one can see that the surfing effect does not lead to a vanishing response

of the pulsar-Earth system to GW waves coming from θ = π. For the tensor and scalar-

breathing modes, it is the transverse nature of GWs that is responsible for the vanishing

response. For the scalar-longitudinal modes the response does not vanish—in fact, the

response increases with both frequency and pulsar distance. For the vector modes the

response does vanish, but more slowly than for the transverse modes. For all GW modes

from directions near θ = π, the redshift increases monotonically up to some limiting
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Eqs. (4.3.5) and (4.3.6) can no longer be performed.

We now discuss the implications of this effect on the overlap reduction functions.

4.4 Overlap reduction functions

As discussed in Section 4.2, the overlap reduction function for the two pulsars in Fig. 13

is equal to

ΓA(|f |) =
3

4π

∑

A

∫

S2

dΩ(e2πifL1(1+Ω̂·p̂1) − 1)(e−2πifL2(1+Ω̂·p̂2) − 1)FA
1 (Ω̂)FA

2 (Ω̂) (4.4.1)

where all possible GW polarizations are allowed with equal amplitudes. It is advantageous

to consider each term in the sum (4.4.1) separately since various gravity theories may have

different polarization content [114, 121, 110, 111, 112, 113, 115, 116, 117, 118, 119, 120].

The overlap reduction function has a closed analytic form for transverse GWs. The

overlap reduction function for the plus mode has been calculated by [71] and is given by

Γ+(ξ) = 3

[
1

3
+

1− cos ξ

2

[
log

(
1− cos ξ

2

)
− 1

6

]]
, (4.4.2)

where ξ is the angular separation of the pulsars. For the scalar-breathing mode, a closed

form is given by [122]:

Γb(ξ) =
1

4
(3 + cos ξ) . (4.4.3)

For the case of non-transverse GWs, the overlap reduction functions cannot be integrated

analytically and we calculate them numerically.

In general relativity the pulsar term can be excluded from the integral in Eq.( 4.4.1)

without any significant loss of optimality [45]. The reason for this is that the smallest

frequencies that PTAs are sensitive to are∼ 0.1 yr−1, and the closest PTA pulsar distances

are ∼ 100 ly, so that fL & 10. This is shown in Fig. 16, where we plot the overlap

reduction functions Γ(fL) with (solid curves) and without (horizontal dashed lines) the

pulsar term for several pulsar separation angles ξ and GW polarization modes. The

frequencies that PTAs are sensitive to are to the right of the vertical dashed line at

fL = 10 in each plot. As seen in Fig. 16(a), Γ+(fL) is roughly independent of frequency
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Figure 16: Γ(fL) with (solid curves) and without (horizontal dashed lines) the pulsar term for the

various polarization modes: plus (a), breathing (b), shear (c) and longitudinal (d). In the latter two

modes, smaller pulsar separation angles are characterized by retained frequency dependence in Γ(fL)

in the range of frequencies relevant to pulsar timing experiments. Nearly all the non-transverse curves

eventually converge, but at rather high values of Γ(fL) relative to the transverse modes, indicating

increased sensitivity to GWs with these polarizations. We have plotted the large limit approximation

(4.4.5) (dashed black curve) along with Γl(fL) in (d), which is in good agreement with the ξ = 0 curve.
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the scalar-breathing mode, which is shown in Fig. 16(b). It is worth pointing out that

both Γ+(fL) and Γb(fL) are normalized to unity for co-aligned pulsars. Note that the

overlap reduction functions for all other modes are normalized with the same factor of

3/4π used in the +-mode.

In Fig. 16(c), we plot the overlap reduction function Γy(fL) for the vector-y mode.

Over the range of relevant frequencies, Γy(fL) is frequency independent for most of the

pulsar separation angles shown. For co-aligned pulsars, however, Γy(fL) retains frequency

dependence well into the range of pulsar timing frequencies, and takes on values an order

of magnitude higher than those obtained by Γ+(fL) and Γb(fL).

Similar behavior is shown in Fig. 16(d), where we have plotted the overlap reduction

function for the scalar-longitudinal mode. Here Γl(fL) retains frequency dependence

throughout the relevant frequency range for each of the pulsar separation angles shown.

For the case of co-aligned pulsars, Γl(fL) diverges as fL→∞, and for separation angles

that do converge Γl(fL) takes on values that are at least an order of magnitude larger

than those obtained by Γ+(fL) and Γb(fL).

For co-located pulsars we can understand the behavior of the longitudinal mode ana-

lytically. In the problematic sky region (θ ≈ π), Γl(fL) is proportional to the square of

the redshift,

Γl(fL) ∝ 2π

∫ 1

−1

∣∣(e−2πifL(1+cos θ) − 1
)∣∣2 cos4 θ

4(1 + cos θ)2
d(cos θ) (4.4.4)

which may be evaluated analytically. In the limit of large fL (fL� 1),

Γl(fL) = π
{

37/6− 4γ − 1/(π(fL)2) + 4 Ci(4πfL)− 4 log (4πfL) + 2πfL Si(4πfL)
}

∼ (37/6− 4γ)π − 4π log (4πfL) + π3fL,

(4.4.5)

where γ is Euler’s constant. The overlap reduction function Γl(fL) is roughly proportional

to fL in this limit. Eq. (4.4.5) is shown along with the numerically integrated overlap

reduction functions in Fig. 16(d) and, with the exception of the singular behavior near

the origin (where the large fL approximation is not valid), agrees well with the numerical

Γl(fL) curve for co-aligned pulsars (ξ = 0).
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PSR Distance (kpc) PSR Distance (kpc)

J0030+0451 0.23 J1853+1303 1.60

J0218+4232 5.85 J1857+0943 0.70

J0613−0200 2.19 J1903+0327 6.45

J1012+5307 0.52 J1909−3744 0.55

J1024−0719 0.35 J1910+1256 1.95

J1455−3330 0.74 J1918−0642 1.40

J1600−3053 2.67 J1939+2134 3.58

J1640+2224 1.19 J1944+0907 1.28

J1643−1224 4.86 J1955+2908 5.39

J1713+0747 0.89 J2010−1323 1.29

J1738+0333 1.97 J2145−0750 0.50

J1744−1134 0.17 J2317+1439 1.89

Table 1: NANOGrav Pulsar Data

4.5 Overlap reduction functions for the NANOGrav pulsars

The NANOGrav PTA consists of 24 pulsars. The Australia Telescope National Facility

(ATNF) data for the distances to these pulsars is given in Table 1 [126]. Using a simple

numerical integration scheme, the overlap reduction function for each pulsar pair was

computed. The main difference relative to the previous section is that we are including

the effect of different pulsar distances. Results are given in Fig. 17 (a)–(d) and show

that the calculated values of Γ(f) are consistent with the more simple results discussed

in Section 4.4 for the non-transverse modes for frequencies up to ∼ 10−9 Hz. Pulsar pairs

with the smallest (ξ . 12◦) separation angles (starred curves in Fig. 17 (b), (d)) for non-

transverse polarization modes are characterized by large values of the overlap reduction

function and monotonic growth up to some limiting frequency. Pulsar pairs with larger

(ξ & 12◦) separation angles (un-starred curves in Fig. 17 (b), (d) and all curves in Fig. 17)

do not display monotonic growth up to a limiting frequency, but still result in much larger

values than those of the plus and cross modes. Fig. 17 shows that sensitivity is greater
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and increases rapidly for pulsars that are nearly co-aligned in the sky.

Over the entire range of frequencies plotted for pulsar timing experiments (between

∼ 10−9 and ∼ 10−7 Hz), the overlap reduction functions are approximately constant. In

practice, some optimality will be lost due to the fact that pulsar distances are known at

best to only ∼ 10% [127].

4.6 Discussion

Direct detection of GWs might be possible in the next decade using a pulsar timing array.

A detection would provide a mechanism for testing various metric theories of gravity. To

develop optimal detection strategies for stochastic backgrounds in alternative theories of

gravity, we have computed overlap reduction functions for all six GW polarization modes,

including four modes not present in general relativity.

We began by introducing the redshift induced by GWs of various polarizations, along

with the polarization tensors unique to each mode. We then used the optimal detection

statistic for an unpolarized, isotropic stochastic background of GWs, defined in Anholm

et al. [45], to find the overlap reduction function, a geometric dependent quantity in the

expression for the expected cross correlation.

We examined the redshifts induced by GWs of various polarizations on the pulsar-

Earth system, and find that our results are consistent with those of Anholm et al. [45]

and Tinto and Alves [125]: when the GWs are coming from roughly the same direction

as the pulses from the pulsar, the induced redshift for any GW polarization mode is

proportional to fL, the product of the GW frequency and the distance to the pulsar.

When the GWs and the pulse direction are exactly parallel the redshift for the transverse

and vector modes vanishes, but it is proportional to fL for the scalar-longitudinal mode.

We show that the vanishing contributions from the tensor, vector and scalar-breathing

modes are not a result of the pulse surfing the GW. In fact, sensitivity to GWs coming

from directions near the pulsar increases for all polarizations. It is the transverse nature

of these modes that is responsible for the vanishing response. In this limit we also show

that the redshift is proportional to the relative velocity of the pulsar-Earth system (Lḣ),
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(a)

(b)
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(c)

(d)

Figure 17: Γ(f) for some of the NANOGrav pulsar pairs. Pulsar pairs, along with their angular

separation in degrees, are shown with each curve. As f increases, Γ(f) approaches a constant value.

The asterisk indicates the NANOGrav pulsar pair with the smallest angular separation (∼ 3.35 degrees).

Note the larger values of the Γ(f)s for this pair.
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We find that the overlap reduction functions for non-transverse GWs are character-

ized by frequency dependence that is significant for nearby pulsar pairs. The values of

the overlap reduction function increase by up to one order of magnitude for the vector

polarization modes and up to two orders of magnitude for the scalar-longitudinal mode.

Pulsar timing arrays are significantly more sensitive to scalar-longitudinal and vector GW

stochastic backgrounds.

Next, we used current pulsar distance and sky-location data from the ATNF pulsar

catalog to calculate the overlap reduction functions for each pulsar pair in the NANOGrav

pulsar timing array. Over the range of frequencies relevant to pulsar timing array exper-

iments, these overlap reduction functions for all polarization modes are roughly constant

for most pulsar pairs. For nearly co-aligned pulsars, the overlap reduction functions for

scalar-longitudinal and vector modes exhibit marked frequency dependence and asymp-

tote to much larger values than the overlap reduction functions for transverse modes. In

fact for a pair separated but about 3◦ we find a sensitivity increase of about a factor of

104 for longitudinal modes.

The results discussed here may be compared to other recent work. Lee et al. [122]

calculated the cross-correlation functions for stochastic GW backgrounds including all six

GW polarizations, and found that the correlation functions for non-transverse GWs are

frequency dependent, as well as an increased response in the cross-correlation to scalar-

longitudinal GWs, in agreement with our results. This work was done in the context of

the coherence statistic [122] for stochastic background detection, rather than the optimal

statistic [45]. The coherence statistic is a measure of goodness of fit of the pulsar-pair

cross-correlations to the Hellings-Downs curve. For non-transverse modes there is no

Hellings-Downs curve because the overlap reduction functions remain frequency depen-

dent for large fL. Lee et al. solved this problem by simulating GW backgrounds and

finding effective background-dependent Hellings-Downs curves for these theories. In the

context of the optimal statistic this is a non-issue: The frequency dependent overlap

reduction functions can be used to construct the optimal filter in Eq. (4.2.13). This is

identical to what is done for LIGO stochastic background optimal filter construction [46],
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Alves and Tinto [123] have estimated antenna sensitivities to GWs of all six polariza-

tion modes by assuming a signal-to-noise ratio of 1 is achieved over 10 years of data and

calculating the noise spectrum. Their results indicate an increase of two to three orders of

magnitude in sensitivity to scalar-longitudinal mode GWs compared to that of plus and

cross mode GWs. To explain this effect Alves and Tinto compare the effect of a tensor

GW propagating orthogonally to the pulsar-Earth system, and a scalar-longitudinal GW

propagating in a direction parallel to the pulse direction. They argue that the increased

sensitivity to longitudinal GWs is due to the amount of time a longitudinal GW affects

the pulsar-Earth radio link.

We have compared the effect of GW propagation from directions near the pulsar and

orthogonal to the pulsar-Earth system for all polarization modes. For GW propagation

directions parallel to the pulse direction we find that the redshift induced by a gravi-

tational wave is large, and seemingly divergent when the GW and pulse directions are

exactly parallel. This apparent divergence occurs for longitudinal, transverse, and shear

modes alike. In that limit, however, the divergent term in the redshift that comes from

the relationship between time and affine parameter derivatives cancels because the phase

of the GW pulse when pulse is emitted is nearly equal to the phase of the GW when the

pulse is received (see Eqs. (4.A.9), (4.3.1) and (4.3.2)). The redshift becomes proportional

to the relative velocity of the pulsar-Earth system and a mode-dependent geometrical pro-

jection factor for all GW polarization modes. In this limit the relative velocity of the

pulsar-Earth system is approximately equal when the pulse is emitted and received. For

transverse and shear modes the projection factor vanishes when the GW and pulse direc-

tions become parallel. For longitudinal modes the geometrical factor goes to a constant,

so that the pulsar-Earth system is very sensitive to GWs from directions near the pulsar.

This is the physical origin of the increased sensitivity to scalar-longitudinal GWs.
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scalar polarization modes

Here we show the derivation of the redshift induced by non-Einsteinian GW modes. We

begin by considering the metric due to a longitudinal mode gravitational wave perturba-

tion:

gab = ηab + hab(t− z)

=




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 + hL



. (4.A.1)

Given a null vector sa = ν(1,−α,−β,−γ) in Minkowski space (where α, β, γ are direc-

tional cosines) the corresponding perturbed null vector is given by

σa = sa − 1

2
ηabhbcs

c

= ν




1

−α
−β

−γ(1− hL
2

)



. (4.A.2)

From the geodesic equation, the t-component of σa must satisfy

dσt

dλ
= −Γtabσ

aσb (4.A.3)

where

Γtab =
1

2
gtc (∂agbc + ∂bgac − ∂cgab)

=
1

2
ġab. (4.A.4)

Now we may write the geodesic equation as

dσt

dλ
= −1

2
ġabσ

aσb

= −1

2
ḣL(σz)2. (4.A.5)
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(σz)2 = ν2γ2

(
1 +

hL
2

)2

≈ ν2γ2 +O(hL) (4.A.6)

allowing us to write the geodesic equation as

dσt

dλ
=

dν

dλ
= −1

2
ḣLν

2γ2. (4.A.7)

We now need to express the time derivative of the metric perturbation, ḣL, as a derivative

of the affine parameter λ. Since hL = hL(t− z), we may write

dhL
dλ

=
∂hL
∂t

dt

dλ
+
∂hL
∂z

dz

dλ

=
∂hL
∂t

dt

dλ
− ∂hL

∂t

dz

dλ
. (4.A.8)

Identifying the relations dt
dλ

= ν and dz
dλ

= −νγ, we obtain the relation

ḣL =
∂hL
∂t

=
1

ν(1 + γ)

dhL
dλ

(4.A.9)

which makes the geodesic equation

dν

dλ
= −1

2
ḣLν

2γ2 = −1

2

νγ2

(1 + γ)

dhL
dλ

(4.A.10)

Integrating both sides, we obtain

νe
νp

= exp

(
−1

2

γ2

(1 + γ)
∆hL

)
(4.A.11)

where ∆hl = hel − hpl . Expanding to first order in hL, we may write

νe − νp
νp

≈ −1

2

γ2

(1 + γ)
∆hL (4.A.12)

= − cos2 θ

2 (1 + cos θ)
∆hL. (4.A.13)

The derivation for vector modes is nearly identical to that of the longitudinal mode. For

the sake of brevity we only detail the vector-y mode in the remainder of this document.

For the vector-y mode, the metric perturbation takes the form

gab =




−1 0 0 0

0 1 0 0

0 0 1 hy

0 0 hy 1



. (4.A.14)
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σa = ν




1

−α
−β + hyγ

2

hyβ

2
− γ



. (4.A.15)

Following the same algebraic steps used above, one obtains the geodesic equation

dσt

dλ
=

dν

dλ
= −ḣyν2γβ, (4.A.16)

which leads to

dν

dλ
= − νγβ

(1 + γ)

dhy
dλ

. (4.A.17)

Integrating this expression and expanding the result to first order in ∆hy produces the

result

νe − νp
νp

≈ − βγ

(1 + γ)
∆hy (4.A.18)

= − sin 2θ sinφp
2 (1 + cos θ)

∆hy. (4.A.19)

where ∆hy = hey − hpy.
For comparison, we also include the results for the plus, cross, vector-x, and breathing

modes. For the plus mode, we obtain

νe − νp
νp

≈ −(α2 − β2)

2(1 + γ)
∆h+ (4.A.20)

= −sin2 θ cos 2φp
2 (1 + cos θ)

∆h+;

(4.A.21)

for the cross mode,

νe − νp
νp

≈ − αβ

(1 + γ)
∆h× (4.A.22)

= −sin2 θ sin 2φp
2 (1 + cos θ)

∆h×; (4.A.23)

for the vector-x mode,

νe − νp
νp

≈ − αγ

(1 + γ)
∆hx (4.A.24)

= − sin 2θ cosφp
2 (1 + cos θ)

∆hx; (4.A.25)
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νe − νp
νp

≈ −(α2 + β2)

2(1 + γ)
∆hb (4.A.26)

=
− sin2 θ

2 (1 + cos θ)
∆hb.

(4.A.27)

Here, ∆hA = heA − hpA, and we can identify these expressions with Eq. (4.1.2).

Figure 18: A system of two pulsars, distance L form the Earth, are shown along with their separation

angle ξ and separation distance x ≈ Lξ. When the GW is in the long wavelength limit, this separation

distance is proportional to the GW wavelength.

Appendix 4.B Trends in Γl(f) for nearby pulsar pairs

Consider a pair of pulsars separated by some small angle ξ and located approximately

equidistant from the Earth so that L1 ∼ L2 ≡ L.

As shown in Section 4.4, if the two pulsars are co-located the overlap reduction function

Γl(f) ∼ π3fL. We expect that if they are separated by a small angle the overlap reduction

function will increase as π3fL as though they were co-located, until the wavelength of

the GW is comparable to the distance between the two pulsars. This happens when

λ ∼ Lξ, (4.B.1)
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fL ∼ 1/ξ. (4.B.2)

For example, for the closest NANOGrav pulsar pair, separated by an angle ξ ∼ 3◦ at a

distance of L ∼ 1 kpc, the frequency at which the linear growth of the overlap reduction

function stops is

f ∼ 10−9 Hz. (4.B.3)

The value of of the overlap reduction function where the behavior changes from the co-

located case Γl(ξ
−1) is a poor estimate of the maximum value of Γl(f), however, because

after exiting the linear regime of Eq. (4.4.5), the overlap reduction functions continue to

increase significantly before converging.
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Figure 19: The NANOGrav pulsar pair J1853 + 1303, J1857 + 0943 has an angular separation of

nearly 3◦, with each pulsar approximately 1 kpc from the Earth. Using the estimate Eq. (4.B.2), the

curve Γl(f) should stop growing as ∼ π3fL near 10−9 Hz, which is shown as the red vertical dashed

line. Note, however, that the curve does not converge onto constant values of Γl(f) at this point; in fact

the overlap reduction function continues to grow well past this point, but no longer linearly with fL (as

indicated by orange solid line).

A closer look at the lower frequency portion of the plot Fig. 17(b), shown in Fig. 19,

indicates that to order of magnitude this approximation is roughly valid.
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Chapter 5

Laser interferometers as

gravitational wave detectors

“Don’t let others discourage you or tell you that you can’t do it.
In my day I was told women didn’t go into chemistry. I saw no
reason why we couldn’t.”

— Gertrude B. Elion, Biochemist, Nobel Laureate

In the previous chapters, gravitational-wave detection was considered in the context

of timing extremely stable millisecond pulsars. A passing gravitational wave induces a

correlated redshift on the signals from a set of pulsars, and determining this correlation

forms the basis of PTA detection efforts. Laser interferometers, first mentioned in Chap-

ter 1, also seek gravitational-wave signals on the basis of their induced effects, but in this

case they seek to determine minuscule changes in length.

5.1 Laser interferometers

Interferometers are devices capable of determining very precise changes in length. The

Michelson interferometer, a relatively simple interferometer illustrated in Fig. 20, uses a

beam splitter to transmit monochromatic laser light down two orthogonal arms. Mirrors

at the end of these arms reflect the incident beams in each arm.

When the light beams recombine at the beam splitter, part of the light — the part

that constructively interferes — returns to the laser, in what is called the symmetric

output direction. The other part — the part that destructively interferes — is sent to
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Figure 20: Schematic for a simple Michelson interferometer. Monochromatic (laser) light is transmitted

to a beam splitter, which sends half the light down one arm (labeled here as the y-arm) and half down

the other (labeled here as the x-arm). Mirrors at the end of each arm reflect the incident light, which

recombines at the beam splitter and produces an interference pattern in the photodiode. Figure credit:

European Space Agency

a photodiode in the antisymmetric output direction. Any difference in the path-length

traversed by the beam (or the length of the interferometer arms) is manifest in light on

the photodiode.

A passing gravitational wave will change the relative length of the interferometer’s

arms. If the gravitational wave has amplitude ∼ h and propagates normal to the plane of

an interferometer with arms of length `, it will induce upon the arms a strain h = ∆`/`.

The gravitational-wave amplitudes produced by astrophysical sources in the ground-

based interferometer frequency band are expected to be quite small, on the order of

h ∼ 10−22. To produce a measurable interference pattern, the change in arm length must

be on the same order as the wavelength of the laser light, ∆` ∼ λlaser. For a typical laser

wavelength λlaser ∼ 1µm and kilometer-scale arms, the interferometer would be sensitive

to gravitational-wave amplitudes of

h =
∆`

`
∼ λlaser

`
∼ 10−6m

103m
= 10−9. (5.1.1)

This is not nearly sensitive enough. Longer arms would translate into improvements in

sensitivity, but constructing interferometers on scales greater than ` ∼ 1 kilometer is

highly impractical.
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Figure 21: A simplified schematic for the Initial and Enhanced LIGO interferometers. Note that the

output mode cleaner was not present in Initial LIGO. Figure from Smith et al. [128]

Instead, a few things are done to turn the Michelson interferometer into a practi-

cal gravitational-wave detector such as the LIGO interferometers. These features are

described in the following subsections.

5.1.1 Fabry-Pérot cavities

As mentioned before, ground-based laser interferometers become more sensitive with

longer arms. In theory the most optimal choice of arm length would be on the order of

the gravitational-wave wavelength ` ∼ λgw. Since the wavelengths of interest are typically

∼ 1000km, the optimal interferometer would need to have arms spanning thousands of

kilometers. In practice, experimental and physical limitations restrict arm lengths to

kilometer scales.

Fortunately, the optical path-length of the light can be extended to effectively create

a longer interferometer arm. To do this, a Fabry-Pérot optical cavity is created in each

arm of the interferometer. Each cavity consists of a pair of parallel, partially transmitting

mirrors. In this cavity, laser light bounces back and forth many times, completing an
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Initial LIGO Enhanced LIGO Advanced LIGO

Laser Power (W) 10 35 200

Maximum Arm Cavity Power (kW) 10 100 800

Maximum Recycled Power (kW) 0.2 0.75 4

Table 2: Laser power properties for the Initial, Enhanced and Advanced LIGO.

effective path-length `eff that can greatly exceed the arm length `.

5.1.2 Power recycling

Another strategy for improving interferometer sensitivity is to increase the power in the

input light beam. One obvious way to do this is to construct the interferometer with

a more powerful laser. Initial LIGO used a laser with power 10 W, and one of the

modifications made for Enhanced LIGO was the addition of a more powerful 35 W laser.

Advanced LIGO will utilize a 200 W laser. The maximum power achievable via upgraded

lasers is limited, however.

There is another, more subtle method to increase the power that is input to the inter-

ferometer. This is called power recycling, and utilizes the light that would otherwise exit

the interferometer though the symmetric output direction. To perform power recycling,

a power recycling mirror (PRM) is constructed between the laser and the beam splitter

to create an effective cavity. The placement of the PRM is shown in Fig. 21, which

schematically illustrates Initial and Enhanced LIGO.

Light is emitted by the laser and propagates to the beam splitter, where some of the

incident light is transmitted into the instrument, and some of the light (in fact, much of

it) is reflected back toward the laser. With the addition of the PRM, the light reflected

by the beam splitter can be be redirected back toward it. A standing wave can be built

between the PRM and the beam splitter in this recycling cavity, effectively increasing the

power that is incident on the interferometer. Table 2 compares laser power for the Initial,

Enhanced and Advanced LIGO experiments along with the maximum effective power

achieved through power recycling, and showcases the dramatic gains in power achieved
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Figure 22: A simplified schematic for the Advanced LIGO interferometers. A key addition is the Signal

Recycling Mirror. Figure from Smith et al. [128]

with the PRM.

5.1.3 Signal recycling

We have seen that Fabry-Pérot cavities and power recycling enhance the sensitivity of

ground-based interferometers. There is yet another method to improve sensitivity even

more; this method is called signal recycling, and involves the addition of a signal recycling

mirror between the beam splitter and the output port of the interferometer (see Fig. 22,

which diagrams Advanced LIGO’s layout). The signal recycling mirror forms an optical

cavity which allows gravitational-wave induced sidebands to be reflected back into the

interferometer. Adjusting the position of the signal recycling mirror allows the interfer-

ometer to either be tuned to specific gravitational-wave sources (at the cost of decreased

bandwidth) or to have an increased bandwidth.
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Figure 23: Various noise sources present in Initial LIGO are shown. The total sum of noise sources

is shown in red; it is this curve that characterizes the overall sensitivity of the detector. Figure from

Hughes et al. [129].

5.2 Sources of noise in interferometric detectors

In the last subsections, features designed to increase the sensitivity of ground-based laser

interferometers were discussed. It is equally worthwhile to probe the noise inherent to

these detectors since it is what limits their achievable sensitivity. Fig. 23 illustrates the

primary sources of noise that limit the sensitivity in modern gravitational-wave interfer-

ometers.
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The Earth does not constitute a “quiet” laboratory. Geologic disturbances and the motion

of people, aircraft and other human activity cause a substantial amount of vibration

in the ground at any given location. Weather-related effects such as wind (and even

tumbleweeds hitting the detector) can also contribute to seismic noise in the detectors.

Seismic noise is what most limits detector sensitivities below ∼ 40 Hz. To mitigate the

effects from this noise, seismic isolation systems are employed. These systems typically

involve spring-loaded platforms, which reduce motion above their resonant frequencies.

5.2.2 Shot noise

The light emanating from the laser in an interferometer comes in discrete packets or

quanta of light. Measurements of the output power in the instrument really measure of

the number of photons that arrive at the photodetector. Independently occurring discrete

events, such as the arrival of a photon, are governed by the Poisson distribution. This

means that for a large number of photons N arriving at the photodetector, there will be

some fluctuations in the number of photons on the order of N1/2; this will also result in

fluctuations in the power observed at the photodetector. These fluctuations in power are

known as shot noise, and this is what limits detector sensitivities at frequencies above

a few hundred Hertz. More power in the laser — or more photons — will reduce the

relative size of the fluctuations, but power recycling techniques are needed in addition to

a powerful laser to mitigate shot noise sufficiently.

5.2.3 Radiation pressure

When a beam of photons A beam of photons that are incident on a mirror experience

a change in momentum as they are reflected back. This results in the application of a

radiation pressure force to the mirror. A beam of photons impinging upon a mirror thus

produce radiation pressure noise within the instrument. If the radiation pressure noise

were constant, it could very easily be corrected with the mirror controls. However, the

fluctuations in the number of photons hitting the mirror result in fluctuating radiation

pressure. Reducing laser power will reduce the radiation pressure, but this comes at
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reduced to a point known as the “standard quantum limit”. This is achieved when the

amplitude of both noise sources is the same at some target frequency.

5.2.4 Thermal noise

Vibrations within the mirrors, suspensions and other parts of the instrument result in

thermal noise within the detector. The most significant of these within the LIGO detec-

tors arise from the pendulum suspension system for the mirrors and the internal vibration

modes of the mirrors themselves. To mitigate such noise, suspension systems and optics

are designed to have resonant frequencies far from the frequencies of interest in the detec-

tor (a few Hz for suspensions and kHz for the optics). The materials used in the detector

are also chosen to have a high quality factor, which confines the noise they create to nar-

row bandwidths. Thermal noise sources are dominant in the detector from approximately

∼ 40 Hz–∼ 100 Hz.

5.2.5 Gravity gradient noise

Another type of noise can arise due to gradients in gravity: fluctuations in the density

of the atmosphere or ground due to seismic activity lead to fluctuations in the Earth’s

gravitational field, and this couples directly with thee test masses in the interferometer

via Newtonian force. This noise cannot be easily isolated from the instrument, as is

the case with seismic noise, because gravitational force cannot be screened. The only

way to truly eliminate such noise would be to place the detector in space. However, it

is not currently a dominant effect in the detectors; at low frequencies, gravity gradient

noise is overwhelmed by seismic noise, and above a few Hz by thermal noise. Future

generation detectors may attempt to mitigate some gravity gradient noise by moving

mirrors underground or compensating for changes in the Earth’s gravitational field.
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Figure 24: Sensitivity curves calculated for LIGO in strain amplitude spectral density. As mentioned in

Sec. 5.1.3, Advanced LIGO will be tunable to specific sources via signal recycling; this is illustrated with

the dashed green curve. The solid blue curve for Advanced LIGO corresponds to its baseline sensitivity,

or to distances to which the coalescence of a binary system of 1.4M� neutron stars could be detected by

a single detector at 200 Mpc. Figure from Smith et al. [128].

5.3 Sensitivity of ground-based laser interferometers

The noise sources discussed in the last section provide the limits of what modern

gravitation-wave detectors can achieve in terms of their sensitivity. In Fig. 24, sensi-

tivity curves are shown for Initial, Enhanced, and Advanced LIGO, and demonstrate the

gains in sensitivity that will be achieved with advanced era detectors. The broadband

curves shown for initial LIGO, Enhanced LIGO and Advanced LIGO correspond to the

distances at which the coalescence of a binary system of 1.4M� neutron stars could be

detected by a single detector. These are roughly 15, 30, and 200 Mpc, respectively.
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Chapter 6

Use of the excess power statistic in

LIGO burst searches

“My methods are really methods of working and thinking; this is
why they have crept in everywhere anonymously.”

— Emmy Noether, Mathematician (1882-1935)

GW signals from the coalescence of intermediate black holes and other compact ob-

jects, being transient in nature, involve slightly different search algorithms than stochastic

backgrounds of GWs. The underlying statistics, however, involve similar techniques. As

with PTA detection experiments, the problem revolves around extracting a small signal

(possibly with a known shape) from noisy data. The optimal statistic, discussed in Chap-

ter 3, utilizes some concepts of matched filtering by constructing an optimal filter and

using this filter to construct the statistic.

For compact binary coalescence events, if the shape of the expected signal (or

waveform) can be well-modeled with post-Newtonian techniques or numerical relativ-

ity, matched filtering can be utilized to search for GW signals. In this case a template

bank containing some large number of possible waveform filters is constructed, and the

GW signal is extracted from the data by correlating each filter with the data.

For some astrophysical sources of gravitational waves, however, the physics under-

lying the GW emission process can be probed only by studying the highly non-linear

self-interactions of the gravitational field, making it difficult (sometimes, impossible) to

precisely model the gravitational wave waveform. Additionally, unknown signals from
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unknown shape from the data.

One method that has been proposed and employed for this type of unmodeled search

is the excess power method, which involves studying time-frequency decompositions of

detector data for gravitational-wave bursts [130, 131, 7]. The excess power method effec-

tively scans detectors’ outputs for transients that are statistically significant relative to

background noise. Blocks of time and frequency, or time-frequency tiles, are constructed

based on knowledge of the signal’s duration and frequency, and the total power within

each tile is calculated. If a signal exists in the data, more power should be present than

would exist from detector noise alone.

This chapter is laid out as follows. Sections 6.1 and 6.2 outline the methodology and

implementation of a search pipeline based on the excess power statistic; in Section 6.1,

the excess power statistic is developed from a frequentist point of view, and in Section 6.2,

the steps used to implement the excess power statistic into an actual search pipeline —

the ExcessPower pipeine — are outlined.

In the remainder of this chapter, efforts to characterize and improve the performance of

ExcessPower are considered. Section 6.3 outlines the manner in which the performance

of search pipelines can be probed, and presents two potential changes to the existing

infrastructure of ExcessPower for improved funtionality. Section 6.4 outlines the manner

in which the ExcessPower pipeline can be used to aid in detector characterization efforts

for advanced generation detectors.

The derivation of the excess power statistic in this chapter follows closely the anal-

ysis of Anderson et al. [130] and Brady et al. [131], and the original implementation by

Cannon [132].

6.1 Geometrical approach to the excess power statistic

To understand how the excess power statistic can be used in GW searches, it is useful to

construct the statistic in an intuitive geometric fashion. In this section, the statistic will

be defined for single-interferometer searches. The analysis for multiple detectors is not

considered in this dissertation, and will be the subject of future work.
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s = {s0, s1, . . . , sN−1} containing N data points. The collection of all such data stretches

forms a N -dimensional vector space V .

Assuming that the detector noise is stationary and Gaussian noise, the detector output

may be expressed as s(t) = h(t)+n(t), where h(t) represents the gravitational-wave signal

and n(t) represents the noise in the detector. This can also be written in index notation

where each index denotes a data point, i.e.

si = hi + ni. (6.1.1)

The statistical properties governing the noise in the data are fully described by a corre-

lation matrix

Rij = 〈ninj〉 = Cn(|i− j|∆t), (6.1.2)

where Cn(t) is the correlation function of the noise and ∆t is the sampling time. From

this definition, one can define an inner product on V :

(a,b) =
N−1∑

i,j=0

aiR
−1
ij bj (6.1.3)

which completely characterizes the geometry within V .

As mentioned earlier, the excess power method works by constructing time-frequency

tiles. Consider some time-frequency window defined by

W = {ts, δt, fs, δf}. (6.1.4)

Here fs is the starting frequency of the window, δf is the bandwidth, ts is a starting time

and δt is a duration. To focus analysis on data that lie inside W , a number of various

methods can be used. The simplest way to do this is with geometry. The vectors in V are

data stretches containing N points of data. Any data stretch that lies within the window

W effectively lies on a subspace VW of V .

Given a set of data (or vector within V), one can then restrict work to stretches that

lie in W using an orthogonal projection: any vector s can be broken into a piece s|| that

lies parallel to VW and a piece s⊥ that is orthogonal to VW , i.e.

s = s|| + s⊥. (6.1.5)
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dimVW = 2 δt δf. (6.1.6)

In practice, other methods can be used to choose data that lies within W . A more

data-intuitive method to do this utilizes the FFT: if data is produced in the time-domain,

one can truncate the data to give it a needed duration, transform the data with a discrete

Fourier transform, and then truncate the frequency values to lie within the necessary

bandwidth.

Regardless of the projection method used, once vectors (or data) lying within the

subspace VW have been obtained, they can be written as

sJ =
N−1∑

j=0

AjJ sj (6.1.7)

where AjJ is a real-valued (dimVW) × N = 2 δt δf × N matrix, sj are real, and J labels

indices that run from 0 ≤ J ≤ (2 δt δf − 1).

Ultimately, the goal is to obtain a statistic that quantifies the amount of power in the

data within the time-frequency window W . This can now be done in a very straightfor-

ward way using Eq. 6.1.7:

EW(s) =

2 δt δf−1∑

I,J=0

QIJ sI sJ (6.1.8)

is defined as the power statistic associated withW , where QIJ is related to the correlation

matrix RIJ by
∑

J

QIJ RJK = δIK (6.1.9)

and

RJK = 〈sJ sK〉 =
∑

j,k

AjJ A
k
K Rjk. (6.1.10)

This statistic describes the total power present in the data stream within W , measured

relative to the detector noise. Note that the correlation matrix RJK depends on the

acquired data (signal plus noise) since there is no way a priori to obtain the noise inde-

pendently. In practice this is not a problem since gravitational-wave signals will be weak

and small in number.
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With a power statistic in hand, it is useful to understand the characteristics of this statistic

in the presence of a signal. When a signal is not present in the data, the sum in Eq. 6.1.8

is over squares of independent, zero-mean, unit-variance Gaussian random variables (i.e.,

E(s) = E(n)). By definition, this is just a χ2 distribution with D = dimVW = 2δt δf

degrees of freedom. The cumulative probability for E , P (E > E∗), can be used to define

the false alarm probability ; this is

Q0(E∗) = P (E > E∗) =
Γ(D/2, E∗/2)

Γ(D/2)
, (6.1.11)

where Γ(D/2, E∗/2) is the incomplete Gamma function, Γ(D/2) is the Gamma function,

and E∗ is the detection threshold.

When a signal is present, Eq. 6.1.8 contains noise and signal pieces, so that

E(s) = E(n + h) =

2 δt δf−1∑

I,J=0

QIJ (nI + hI) (nJ + hJ) . (6.1.12)

The amplitude of the signal is 1

A2 =
(
h||,h||

)
=

D−1∑

I,J=0

QIJ hI hJ . (6.1.13)

Here where we use the notation || as a reminder that h lies within the subspace VW .

It can be shown (see Ref. [130]) that the probability distribution for E is

p(E|A,D/2) =
∞∑

n=0

e−A
2/2(A2/2)n

n!

e−E/2(E/2)n+D/2−1

Γ(n+D/2)

= (1/2)e−(E+A2)/2
(
E1/2/A

)D/2−1
IV−1

(
AE1/2

)
,

(6.1.14)

where the notation In(x) designates a modified Bessel function of the first kind of order

n. This distribution is a non-central χ2 distribution with non-centrality parameter A2.

The detection probability can now be defined; this comes from the cumulative probability

distribution for E , and can be written as

QA(E∗, A,D/2) = P (E > E∗|A,D/2) =

∫ ∞

E∗
p(E|A,D/2)dE . (6.1.15)

Eq. (6.1.15) represents the detection probability for a given threshold E∗ and a given

signal amplitude A.

1As explained in Ref. [130], A is the SNR that would be obtained by matched filtering, if matched

filtering were possible, and if the signal h was contained within the relevant time-frequency window.
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gstlal_excesspower

Having laid out the theory governing the excess power statistic in Secs. sections 6.1

and 6.1.1 the details surrounding actual implementation in burst gravitational-wave

searches can be described. The excess power statistic was first implemented by

Cannon [132] as lalapps_power (fully detailed in [131]) and later restructured as

gstlal_excesspower by Pankow [133], which is built on gstreamer, a low-latency

framework for signal processing tools. The gstlal_excesspower program reads in

gravitational-wave detector time series data from single or multiple detectors, and out-

puts a sngl_burst table that lists gravitational-wave signal candidates, along with

parameters that characterize the candidates. Software injections can also be processed

by gstlal_excesspower. This will be discussed in more detail in Sec. 6.3. Note that

the description of the implementation in this section closely follows that of Cannon [132].

To describe the manner in which gstlal_excesspower applies the excess power

statistic to data, consider a discretely-sampled time series of N samples, sj (where

0 ≤ j ≤ N − 1 ), that has been sampled at a rate 1/∆t.

6.2.1 Whitening

Given a subset or segment of detector data that has some duration and bandwidth, the

excess power statistic quantifies the total power in that data segment relative to the

detector noise. To calculate the excess power probability, the first procedure that must

take place in the gstlal_excesspower pipeline is to whiten and normalize the input

data so that it takes the form of stationary, white, unit-variance Gaussian noise in the

absence of a signal.

Whitening (and much of the analysis that follows) takes place in the Fourier domain.

Before proceeding, it is necessary to multiply sj by a window function wj that is tapered

at its start and end to mitigate corruption that could arise from aperiodicity of the sample

at its boundaries.

The data then undergoes a discrete Fourier transform. For a given frequency bin k,
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s̃k =
∆t

σw

N−1∑

j=0

wj sj e
−2πi j k/N (6.2.1)

where the mean of the tapered window samples is

σw =

[
1

N

N−1∑

j=0

w2
j

]1/2

. (6.2.2)

In principle the number of frequency bins can range from 0 ≤ k ≤ N−1, but the frequency

bins [N/2] < k < N correspond to negative frequency components. Since the input data

is entirely real, these are determined by the complex conjugates of the positive frequency

components, s̃−k = s̃∗k. For the remaining frequency bins, each bin can be associated to

some frequency

fk = k∆f (6.2.3)

where the size of the frequency bin ∆f is determined by the duration N∆t, i.e., ∆f =

1/(N∆t).

To whiten, a power spectral density (PSD) is needed. In general, a one-sided PSD

can be defined as2

Pk = ∆f〈|s̃k|2 + |s̃N−k|2〉, (6.2.4)

where s̃N−k represent the negative frequency components and 〈 〉 denotes the expectation

value. Since we are working with real data, this can be simplified to

Pk = 2∆f〈|s̃k|2〉, k = 1, · · · , [(N − 1)/2]. (6.2.5)

In gstlal_excesspower, the PSD is estimated using the median power at each fre-

quency for a number of overlapping segments. This convention is implemented to avoid

any bias that would arise due to a gravitational-wave signal or large noise-transient in

the data.

The goal of whitening is to make

〈|s̃k|2〉 = 1 (6.2.6)

2Here we can ignore P0 and P[N/2] when N is even.
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by an appropriate factor involving the PSD:

ŝk =

√
2∆f

Pk
s̃k. (6.2.7)

Note on the PSD and variance

It is useful to reflect on the relationship between the PSD and the variance of the time

series 〈sj〉 that would be obtained by inverse Fourier transforming the whitened frequency

domain data. These quantities are related in the sense that the PSD effectively describes

how the variance of the data is distributed over its frequency components.

Quantitatively, this relationship is described by

〈s2
j〉 =

1

N2 ∆t2

N−1∑

k=0

N−1∑

k′=0

〈s̃k s̃∗k′〉 e2πi j (k−k′)/N

=
1

2N∆t

N−1∑

k=0

Pk
(6.2.8)

when the input time series corresponds to a stationary process. However, windowing

a time series correlates its frequency components (because the Fourier transform of the

series has effectively been convolved with that of the window). This means that 〈ŝk ŝ∗k′〉
is not proportional to δkk′ , and is given instead by the quantity

〈ŝk ŝ∗k′〉 =
1

σ2
w

N−1∑

j=0

w2
j e
−2πij(k−k′)/N . (6.2.9)

Substituting Eq. (6.2.9) into Eq. (6.2.8), one can see that the variance of the (whitened)

time series obtained by inverse Fourier transforming the whitened data becomes

〈s2
j〉 =

1

∆t2σ2
w

w2
j (6.2.10)

where here we have used s to denote the difference between the un-whitened and whitened

variances.

6.2.2 Channel Filters

After whitening the input time series in the frequency domain, digital filters are applied

to the data. The filters turn a single frequency series into many frequency series (or chan-

nels), allowing gstlal_excesspower to function as a multi-resolution search pipeline.
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f0 f1 f2 f3
Figure 25: Illustration of the channel filter choice made in gstlal_excesspower. The Hann window

(dashed lines filled in cyan) is chosen as the filter for the narrowest frequency channels, lying centered

on each channel. When summed, adjacent Hann windows produce a Tukey window (solid red line) with

a flat top and ends that taper as sin2. In this figure, 4 Hz filters are summed to produce a 16 Hz Tukey

window. Note that overlap in the Hann windows need only be accounted for adjacent filters.

In the language of Sec. 6.1, it is the application of filters that partially projects the input

time series onto the many different possible subspaces s||.3

There are many possible ways to choose a channel filter. It turns out to be useful to

choose the filter in such a way that summing narrow-band filters produces a filter for a

wide-band channel. Suppose that the filter for some particular bandwidth B is denoted

by H̃k(f1, B) (where f1 ≤ fk < f2 = f1 + B). In this case, if b is the bandwidth of the

narrowest channel and B = nb, then the filter for the channel of bandwidth B is given by

H̃k(f1, B) =
n−1∑

m=0

H̃k(f1 +mb, b). (6.2.11)

One choice of filter that satisfies Eq. 6.2.11 for the narrow-band filters is the Hann

window, defined via

H̃k(f1, b) =





sin2 [π/(2b) (fk − f1 + b/2)], f1 − b/2 ≤ fk ≤ f1 + 3b/2

0, otherwise.
(6.2.12)

The sum of adjacent Hann windows (of equal bandwidth) that lie centered on their

frequency channel produces a Tukey window that is flat over middle frequencies and

3The rest of this projection comes from choosing specific segments of time.
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windows and their sum, which is a 16 Hz Tukey window.

To discuss the normalization of the filters, we define their “magnitude” to be

{
X̃, Ỹ

}
=

N−1∑

k′=0

N−1∑

k=0

(−1)(k−k′)〈ŝkŝ∗k′〉X̃∗k Ỹk′ . (6.2.13)

The narrowest channels (of bandwidth b) are normalized so that they have a magnitude

{
H̃∗k(f1, b)H̃k′(f1, b)

}
=

b

∆f
. (6.2.14)

This choice of normalization will be important later on when considering the channel

time series that are constructed from the filtered frequency-domain data.

It is worth pointing out that wide channels formed from summed from narrow channels

will not have a magnitude of nb/∆f . This can be seen with a simple example: suppose

that

H̃k(f1, 2b) = H̃k(f1, b) + H̃k(f1 + b, b). (6.2.15)

Then the magnitude of the the filter H̃k(f1, 2b) can be found to be

{
H̃k(f1, 2b), H̃k(f1, 2b)

}
=

2b

∆f
+ 2

{
H̃k(f1, b), H̃k(f1 + b, b)

}
. (6.2.16)

In light of this result, the specific choice of the Hann and Tukey windows as filters becomes

clear: it allows the approximation to be made that only adjacent channels have enough

overlap for non-trivial inner products. In this approximation, the only cross-terms such

as those appearing in Eq. (6.2.16) that need strict accounting for are the cross-terms from

adjacent channels. In general, then, a filter spanning n channels can be given by

H̃k(f1, nb) =
n−1∑

i=0

H̃k(f1 + ib, b), (6.2.17)

and its magnitude is

{
H̃(f1, nb), H̃(f1, nb)

}
=

nb

∆f
+ 2

n−2∑

i=0

{
H̃(f1 + ib, b), H̃(f1 + (i+ 1)b, b)

}
. (6.2.18)

The quantity on the right-hand side of Eq. (6.2.18) will be denoted as µ2(f1, nb) in the

remainder of this section.



www.manaraa.com

1126.2.3 Construction of Time-frequency Tiles

To construct time-frequency tiles, an inverse Fourier transform must be used to take

the many channel-filtered frequency series back into the time domain. What began as a

single time series is now many time series, one each for many different frequency channels.

The inverse Fourier transform that describes these channel time series’ can be written

explicitly; for the channel that has bandwidth b and starts at frequency f1, it is

zj(f1, b) =
1

N ∆t

N−1∑

k=0

ŝkH̃
∗
k(f1, b) e

2π i j(k−k′)/N . (6.2.19)

Following the inverse Fourier transform, the channel time series are handed to an un-

dersampler, which resamples them. This is necessary because the channel time series

are oversampled (for the narrowest frequency bands, the sample rate greatly exceeds

the Nyquist rate). Oversampling is problematic for gstlal_excesspower because it

means there are more samples per unit time than degrees of freedom per unit time in

the channel time series: the tiles created at the original sampling rate are correlated to

within the duration of the filter. The undersampler selects evenly spaced samples from

each channel time series to yield appropriately sampled time series.

Ultimately, we will be interested in quantities that involve power, or the square of the

channel time series. The mean square of Eq. 6.2.19 is

〈z2
j (f1, b)〉 =

1

N2∆t2

N−1∑

k=0

N−1∑

k′=0

〈ŝkŝ∗k′〉H̃∗k(f1, b)H̃k′(f1, b)e
2πij(k−k′)/N . (6.2.20)

This quantity is actually sample-dependent (meaning that it depends on the index j)

due to the windowing that took place on the initial time series prior to being Fourier

transformed. This can be corrected by applying another Tukey filter: by demanding that

the middle part of the series is flat, the mean square of the series zj(f1, b) should be

independent of j when j1 ≤ j < j2. In this case, the mean square can be written as

〈z2
j (f1, b)〉 =

1

N2∆t2

N−1∑

k=0

N−1∑

k′=0

(−1)(k−k′)〈ŝkŝ∗k′〉H̃∗k(f1, b)H̃k′(f1, b) (6.2.21)

which is just

〈z2
j (f1, b)〉 =

1

N2 ∆t2
b

∆f
(6.2.22)
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channel that spans n narrow channels can be written very simply with a sum

zj(f1, nb) =
N−1∑

k=0

(
n−1∑

m=0

H̃k(f1 +mb, b)

)
e2πijk/N (6.2.23)

=
N−1∑

m=0

zj(f1 +mb, b) (6.2.24)

and broader channel time series may be defined. In gstlal_excesspower this step

is accomplished using an element known as the “matrix mixer”, which combines samples

along with the appropriate normalizations to achieve higher bandwidth resolutions.

The next step in the detection process involves the construction of time-frequency tiles.

Before proceeding, it is helpful to express the number of degrees of freedom contained in

a tile of bandwidth B and duration T ; this is

d = 2BT. (6.2.25)

Here the factor of two comes from the Nyquist-Shannon sampling theorem, which requires

a signal with bandwidth B to be sampled at a rate ≥ 2B.

Tiles are constructed by choosing a channel time series, and summing the squares of

the samples for some duration of time in gstlal_excesspower’s “square-adder”. A

tile that spans the frequencies f1 ≤ f < f1 + B and times t1 ≤ t < t1 + T can thus be

expressed using the samples from the time zeries zj(f1, B). The use of the excess power

statistic is considered next, along with the output of gstlal_excesspower.

6.2.4 Excess Power and Output

The excess power in the input time series is excess in the sense that it stands out relative

to the pre-whitened data stream. The whitened energy contained in a tile that spans

frequencies f1 ≤ f < f1 +B and times t1 ≤ t < t1 + T can be expressed as

E =
1

µ2(f1, B)
z(f1, B) · z(f1, B)

=
1

µ2(f1, B)

d−1∑

i=0

z2
j1+(i+ 1

2
)∆j

(f1, B)

(6.2.26)

where j1 = t1/∆t and ∆j = T/(d∆t).
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random variable with d degrees of freedom. Once the energy of a time-frequency tile

has been determined via Eq. 6.2.26, it is necessary to threshold on the energy to select

“important” tiles; the threshold is the probability that a tile would be found with at least

E from stationary Gaussian noise alone. The higher this probability is for a given tile,

the less likely it is to correspond to a gravitational-wave burst.

Tiles that survive the thresholding process are recorded as events or triggers in a

sngl_burst table along with several other parameters which include a confidence and

SNR. The confidence is minus the natural logarithm of the probability of observing a tile

with a whitened energy of E or greater in stationary Gaussian noise,

confidence = −lnP (≥ E). (6.2.27)

Larger confidence corresponds to a tile that one would be less likely to find in stationary

Gaussian noise.

For a given event, the quantity that in gstlal_excesspower that is associated

with “signal” is E − d; the expectation value of whitened energy is 〈E〉 = d, and the

quantity E − d is the amount of whitened energy that exceeds what is expected from

noise alone. In this case, the quantity

η =
E − d
d

(6.2.28)

has 〈η〉 = 1 and 〈η2〉 = 2/d for Gaussian noise, and in this sense can be thought of as a

ratio involving signal and noise. The quantity that is conventionally stored as SNR by

gstlal_excesspower is
√
η. However, the

√
η is not a true estimator of the optimal

SNR of a signal, which is defined as

ρ2
opt = 4

∫ ∞

0

|h̃(f)|2
S(f)

df. (6.2.29)

where S(f) is the noise spectral density. Note that this definition assumes a one-sided

noise spectral density.

The final quantity recorded by gstlal_excesspower is an amplitude, which called

the root sum square strain or hrss. The hrss characterizes the total gravitational-wave
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h2
rss =

∫ [
|h+(t)|2 + |h×(t)|2

]
dt. (6.2.30)

The amplitude that is actually received at the detector is modulated by the detector

antenna patterns F+ and Fx, i.e.

hdet(t) = F+h+(t) + F×h×(t), (6.2.31)

and one can thus define the quantity

h2
rss, det =

∫
|hdet(t)|2dt

=

∫ [
F 2

+h
2
+(t) + F 2

×h
2
×(t)

]
dt,

(6.2.32)

which represents the root sum square strain at the detector. This quantity is related to

the optimal value of the SNR ρopt defined in Eq. (6.2.29).

The method conventionally used by gstlal_excesspower to estimate the hrss, det

is to discretize the integral in Eq. 6.2.29 under the assumption that the noise power

spectral density is approximately constant over the bandwidth of interest. In this case,

h2
rss, det =

ρ2

2(fH − fL)

fH∑

fL

S(f)∆f =
ρ2

2
〈S(f)〉 (6.2.33)

where ρ is an estimator for the optimal SNR, Eq. (6.2.29). It turns out that this choice

is not necessarily optimal. A modified definition is presented in the next section.

Events recorded by gstlal_excesspower are stored in a sngl_burst table, a

file of .xml format that is structured to contain tables and various parameters for each

table. In many cases, the number of events recovered is quite large. While it is possible

that some events correspond to gravitational-wave bursts, noise in the detector is often

to blame for the large number of events. To reduce the event rate and assist in parameter

determination, a clustering process is used to combine overlapping tiles.

Given a pair of overlapping tiles, the cluster tile is the smallest tile that contains the

original two tiles. It is constructed to inherit the hrss, stored SNR and confidence of the

most significant contributor; the most significant contributor is the tile whose boundaries

are the SNR2-weighted (η2-weighted) average boundaries of the two contributing tiles.
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Tile B

Tile A

/Users/Syd/
Desktop/

Presentations
/PhD/

cluster_fig_ta
ble.pdf 

Cluster Tile

ligolw_bucluster

1

sngl_burst quantity cluster tile

sngl burst.ms confidence CB

sngl burst.ms hrss hB

sngl burst.ms snr
p
⌘B

sngl burst.peak time (⌘AtA + ⌘BtB) / (⌘A + ⌘B)
sngl burst.peak frequency (⌘AfA + ⌘BfB) / (⌘A + ⌘B)
sngl burst.amplitude hA + hB

sngl burst.snr
p
⌘A + ⌘B

Table 1: Parameters for the low-frequency ETG mock data challenge injection waveforms.

1

sngl_burst quantity tile A tile B

sngl burst.confidence CA CA

sngl burst.amplitude hA hB

sngl burst.snr
p
⌘A

p
⌘B

sngl burst.peak time tA tB

sngl burst.peak frequency fA fB

Table 1: Parameters for the low-frequency ETG mock data challenge injection waveforms.

sngl_burst quantity cluster tile

sngl burst.ms confidence CB

sngl burst.ms hrss hB

sngl burst.ms snr
p
⌘B

sngl burst.peak time (⌘AtA + ⌘BtB) / (⌘A + ⌘B)
sngl burst.peak frequency (⌘AfA + ⌘BfB) / (⌘A + ⌘B)
sngl burst.amplitude hA + hB

sngl burst.snr
p
⌘A + ⌘B

Table 2: Parameters for the low-frequency ETG mock data challenge injection waveforms.
Figure 26: Overlapping tiles are clustered using ligolw_bucluster. Given two overlapping tiles A

(orange) and B (cyan), the algorithm creates a new cluster tile (shaded region), which is the smallest

tile that contains both original tiles. The most significant contributor is chosen from the tile whose

boundaries are the SNR2-weighted average boundaries of the contributing tiles. In this schematic, tile B

is assumed to be the most signifiant contributor, and the quantities stored in the sngl_burst table are

adopted from this tile. In addition to these parameters, several new “most significant” quantities (e.g.,

ms snr, ms hrss, etc.) are added to the sngl_burst table.
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(a)

(b)

Figure 27: Clustering greatly reduces the event rate, as seen in these before-clustering (top) and after-

clustering (bottom) plots. Here round markers are used to indicate the location of tiles, and the markers

are colored by tile energy.

The most significant hrss, SNR and confidence adopted by the most significant contributor

are stored in the sngl_burst table in separate columns from the clustered tile’s hrss and

SNR, which are determined by summing the hrss and SNR (in quadrature) of the original

tiles. It is worth pointing out that tile overlap is not considered in this process, which

results in over counting these parameters; this is needed to continue carrying information

needed to compute the SNR2-weighted peak time and frequencies. A most significant

bandwidth and duration are also determined by choosing the smallest band and interval,
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Fig. 26 shows a schematic of the clustering process, which is completed using

ligolw_bucluster, and shows how the contents of the sngl_burst table change

according to the clustering algorithm.

The effect that clustering has is significant on the number of events stored in

sngl_burst; this is illustrated in Fig. 27 which plots time-frequency tiles that are

stored as sngl_burst events before and after clustering.

6.3 Signal detection in a single-interferometer

As mentioned in the last section, a typical search for burst cgravitational-wave signals with

gstlal_excesspower results in a very large number of events in the sngl_burst

table. For single-interferometer searches, part of the gravitational-wave problem involves

determining which recorded events should be called “detections”. One way to tackle this

problem is to threshold on some statistic. In this case, the statistic for an event recorded

by ExcessPower is compared to the threshold value; if the statistic exceeds the threshold

value, a detection is said to occur. If not, a non-detection occurs.

Suppose that some signals are injected into data and processed by a search pipeline,

outputting a sngl_burst table conaining events. Some of these events will (ideally)

correspond to injected signals, but some will also correspond to noise. To determine

whether a given event is a gravitational-wave signal or noise, some sort of threshold must

be used; events that pass the threshold test can be referred to as detections, while events

that fail the threshold test are referred to as non-detections. Several outcomes are possible

for a given event:

1. The event passes the threshold test, and corresponds to an injected signal. In this

case, the result is a true-positive.

2. The event fails the threshold test and is labeled a non-detection, but actually cor-

responds to an injected signal. In this case the result is a false-negative.

3. The event fails the threshold test and corresponds to noise; the event is labeled a

non-detection. This result is called a true-negative.
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to as a false-positive.

The choice of threshold obviously has a large impact on the outcome of a signal injection

search. Setting the threshold relatively low will result in more signals being detected, but

comes at the price of many false alarms. Setting the threshold relatively high reduces the

number of false alarms, but results in more missed signals. To design an optimal search,

it is useful to answer the question, “how many false-positives can be tolerated to reduce

the number of false-negatives that occur?”

The Receiver Operating Characteristic (ROC) curve can be used to probe this ques-

tion. This curve plots the percent of signals reported as positive against the percent

of non-signals erroneously reported as positive, for various threshold values. Put differ-

ently, the ROC curve plots efficiency versus the false-alarm probability. This curve thus

quantifies the tradeoff of true-positive versus false-positive results.

The ROC curve can be compared to probability density functions for the target pop-

ulation (gravitational-wave signals) and the non-target population (non-signals). This is

shown in Fig. 28; sample signal and non-signal probability density functions are shown

with a particular choice of threshold (vertical line) next to the point represented in the

corresponding ROC curve. Each point on the ROC curve corresponds to a specific thresh-

old choice (or a single possible trade-off between true and false positives). Points can be

compared to what would be achieved through pure guessing (efficiency = FAP). The ROC

curve thus serves as an excellent indicator of performance.

One way to illustrate the ROC curve is to perform a pipeline efficiency test. Pipeline

efficiency tests aim to identify how well a given pipeline can recover signals with known

parameters. To do this, signals with the desired parameters are injected into appropriate

background noise and analyzed by the pipeline. Roughly speaking, an efficient pipeline is

one that recovers the injected signals well. In the remainder of this section, the efficiency

of gstlal_excesspower is probed using injections, and a ROC curve is produced.
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(a) (b)

(c) (d)

(e) (f)

Figure 28: Relationship between target (signal) and non-target (non-signal) pdfs, parameter threshold

and ROC curves. The left figure in each panel displays pdfs for non-target (orange) and target populations

(blue) along with a parameter threshold (red vertical line). The right figure in each panel displays the

ROC curve. Each choice of threshold specifies a point on the ROC curve. In (a), where the threshold

is fairly low, more target signals are found in (b), but the false-alarm is higher; in (e), the threshold is

relatively high, resulting in a lower false-alarm rate in (f) but fewer target signals recovered. The center

panel lies between these two extremes.
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TimeHsL

Sine Gaussian Waveform

(a)

TimeHsL

Band & Time Limited WNB Waveform

(b)

Figure 29: Sample sine Gaussian (a) and band-time limited white noise burst (b) signals are shown in

the time domain, with signal amplitude along the vertical axis.

6.3.1 Injected waveforms

To study the performance of gstlal_excesspower as a gravitational-wave burst

pipeline, a set of mock gravitational-wave burst signals were injected into one week of

simulated aLIGO data. Two signal waveforms were used: sine-Gaussians, which are sine

signals modulated by Gaussian envelopes,

hSG(t) = h0 sin (2πf0t)e
−t2/τ2 , (6.3.1)

and band-and-time limited white noise bursts (BTLWNBs). Note that the sine-Gaussian

waveform is characterized by a frequency and Q-number where Q =
√

2πτf0, while the

BTLWNBs are characterized by a frequency band and duration. Two sample waveforms

are illustrated in Fig. 29). These two families of signals have the advantage that they can

be used as surrogates for nearly any practical signal (including non-astrophysical signals,

discussed later on in Sec. 6.4).
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Sine Gaussian BTLWNB

Number of injections 20137 20137

Central frequency 40 Hz – 4000 Hz 50 Hz – 1500 Hz

Bandwidth range N/A 50 Hz – 1500 Hz

Q number 3-9 N/A

SNR (ρopt) distribution Uniform, µ = 3− 50 Uniform, µ = 3− 50

Table 3: Parameters for the ETG mock data challenge injection waveforms. A total of 20000 injections

were created, and injected into the data at 1/30s. Note that signals were scaled to have SNRs with the

values shown above, based on the optimal SNR defined in Eq. (6.2.29)

Figure 30: Simulated 2018 aLIGO power spectral density used in the ETG mock data challenge. The

simulated PSD provides the noise power spectrum for aLIGO under the high-power broad-band signal

recycling (no detuning of the signal recycling cavity), and includes thermal and quantum noise.

The injections used in this study comprise an ongoing event trigger generator (ETG)

mock data challenge (to be published in McIver et al. [134]) and were established to have
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tions were created as elements of a sim_burst table within an injection file; to process

the injections plus noise within gstlal_excesspower, the injections were added to

“FAKE-STRAIN” channel gravitational-wave frame files containing the estimated 2018

aLIGO power spectral density. A plot of this power spectral density is shown in Fig. 30.

Because the highest frequency component of any single injection did not exceed 4000 Hz,

the data were processed at a sampling rate of 8192 Hz.

6.3.2 Determination of signal amplitude

There is a subtle problem with the method used by gstlal_excesspower to estimate

recovered signal amplitude hrss,det. This method, shown in Eq. (6.2.33), involves an

assumption that the PSD is approximately constant over the bandwidth of interest. In

practice, this is often true for signals of relatively high frequency where the PSD is fairly

flat (see Fig. 30), but fails to approximate the hrss,det well for signals with bandwidths

over which the PSD is changing more rapidly. In this section, we derive an alternative

expression to estimate the hrss,det that takes this factor into consideration.

The hrss,det was defined in Eq. (6.2.32) as

h2
rss, det =

∫ ∞

−∞
|h̃det(t)|2dt =

∫ ∞

−∞
|h̃det(f)|2df

= 2

∫ ∞

0

|h̃det(f)|2df
(6.3.2)

where the last equality on the first line comes from Parseval’s theorem. With actual

data, the range of frequencies probed is not 0 ≤ f ≤ ∞ but some finite bandwidth

fL ≤ f ≤ fH , and the integral in Eq. (6.3.2) can be replaced by

h2
rss, det = 2

∫ fH

fL

|h̃det(f)|2df (6.3.3)

If the signal doesn’t change too much over the bandwidth of interest (i.e., if h̃(f) is roughly

constant over the bandwidth), the product |h̃det(f)|2 can be written approximately as

|h̃det(f)|2 ≈ H2 (6.3.4)

where H is some constant. In this case, the integral in Eq. (6.3.3) can be evaluated
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h2
rss, det = 2

∫ fH

fL

|h̃det(f)|2df = 2H2(fH − fL). (6.3.5)

Under the approximation used in Eq. (6.3.4), the expression for the SNR given by

Eq. (6.2.29) can be rewritten as

ρ2 ≈ 4H2

∫ fH

fL

1

S(f)
df

= 2
h2

rss

(fH − fL)

∫ fH

fL

1

S(f)
df.

(6.3.6)

which can be simplified to

ρ2 = 2h2
rss

〈
1

S(f)

〉
. (6.3.7)

Solving for hrss,det in Eq. (6.3.7) yields

h2
rss =

ρ2

2

1

〈1/S(f)〉 , (6.3.8)

which, although similar in form to Eq. (6.2.33), is different; in general,

〈X(f)〉 6= 1

〈1/X(f)〉 (6.3.9)

for an arbitrary function X(f). The value of ρ2 in Eq. (6.3.8) is an estimator for the

optimal SNR in Eq. (6.2.29) and has been chosen to be ρ2 = E − d. This choice will be

discussed in the following section.

The amplitude definition in Eq. (6.3.8) more effectively approximates the hrss, det in

regions where the PSD is changing. For example, consider the sine Gaussian signal with

central frequency ∼ 50 Hz that was injected into simulated aLIGO data and recovered

by gstlal_excesspower. Table 4 compares the injected hrss,det value with the hrss, det

values obtained by Eq. (6.2.33) and Eq. (6.3.8). It is clear that Eq. (6.3.8) estimates the

injected amplitude much more closely than Eq. (6.2.33).

Injected hrss, det hrss, det ∝ 1/〈1/S(f)〉 hrss, det ∝ 〈S(f)〉

3.6× 10−21 4.2× 10−21 4.1× 10−18

Table 4: A signal with known injected hrss, det (given in the first column) was recovered by

gstlal_excesspower. Its hrss, det was then estimated using the recovered SNR and Eq. (6.3.8 and

Eq. (6.2.33), respectively.
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lenge

Post-processing of the outputs from gstlal_excesspower involves several steps be-

yond handing frame files to the pipeline handler. First, sngl_burst events — or trig-

gers — are clustered to reduce the event rate. The file containing the clustered triggers

is then conglomerated with the sim_burst table containing injections, and injections

are matched to corresponding sngl_burst events by event identification information

that is stored in both sngl_burst and sim_burst tables. This step thus crucially

identifies which events in sngl_burst match an injected signal exactly. The results

from one week of data are summarized in figures of merit (FOMs). Of 40274 injections,

33974 — or about 85% — were recovered. This is shown in Fig. 31, which plots the

frequencies of found injections (black +) and missed injections (red x) versus time.

Figure 31: Found (black +) and missed (red ×) injections for the one week ETG mock data challenge

as a function of GPS time.

The recovered hrss, det, determined using the estimate in Eq. (6.3.8), is plotted against

the injected hrss, det in Fig. 32 and indicates that the distribution follows a shape roughly

expected.
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√
η) versus injected SNR (ρopt), which

was defined in Eq. (6.2.28). The SNRs
√
η recovered using the most significant value of

Eq. (6.2.28) significantly underestimate the injected SNR ρopt. To optimally estimate ρopt,

it appears that a quantity other than the most significant SNR stored in the sngl_burst

table should be chosen or calculated.

Figure 32: The estimated recovered hrss, det is plotted as a function of injected hrss, det for injections

found in the one week ETG mock data challenge. The diagonal line represents values at which the

recovered hrss, det exactly equals injected hrss, det. The recovered hrss, det values were estimated using

Eq. (6.3.8); some of the recovered values slightly underestimate the hrss, det, but the distribution has the

form roughly expected.
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in the frequency domain as s̃(f) = h̃(f)+ñ(f), where h̃(f) is the gravitational-wave signal

and ñ(f) is the noise, then the energy in the signal can be written as

E = 4

∫ ∞

0

|s̃(f)|2
S(f)

df

= 4

∫ ∞

0

|h̃(f) + ñ(f)|2
S(f)

df

(6.3.10)

Ignoring any cross-terms of the form h̃(f)ñ(f) (since 〈ñ(f)〉 = 0), we can then write

〈E〉 = 4

∫ ∞

0

|h̃(f)|2
S(f)

df + 4

∫ ∞

0

〈|ñ(f)|2〉
S(f)

df

= ρ2 + d.

(6.3.11)

The first term on the right-hand side of in Eq. (6.3.11) is the optimal SNR ρopt. The

second term can be be thought of as the power in the noise alone. The power in the noise

alone is distributed as a χ2 distribution with d degrees of freedom, so this term averages

Figure 33: Recovered most significant SNR, defined by
√
η in Eq. (6.2.28), is plotted against the

injected SNR ρopt. The solid black line indicates optimal recovery when recovered SNR equals injected

SNR. When recovered using η, the injected values of the SNR ρopt are significantly underestimated. This

reflects the idea that Eq (6.2.28) should not be used as an estimator for the SNR.
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Figure 34: Recovered most significant SNR, defined by ρest =
√
E − d in Eq. (6.2.28), is plotted against

the injected SNR ρopt. The solid black line indicates points where recovered SNR ρest equals injected SNR

ρopt exactly. Closeness of points to the solid black line illustrate that Eq (6.3.12) is a better estimator

for the optimal SNR ρopt than
√
η.

to d. The optimal SNR can thus be approximated as

ρest ≈
√
E − d (6.3.12)

which differs from the convention in Eq. (6.2.28). The definition in Eq. (6.3.12) proves to

be more optimal, as seen in Fig. 34, which forms an improved distribution of values.

6.3.4 ROC curve

A ROC curve was determined for gstlal_excesspower using the results just de-

scribed. As discussed in Sec. 6.3, the ROC curve quantifies the tradeoff between efficiency

and FAP for various threshold choices. In gstlal_excesspower, confidence is used as

the threshold. Each event recovered by gstlal_excesspower stores a value of confi-

dence in the sngl_burst table; this value is determined using a percent point function,

which is effectively an inverse distribution function. In the absence of any signal, the

power in the noise should be distributed as a χ2 distribution with N degrees of freedom.



www.manaraa.com

129The percent point function takes the tile energy and degrees of freedom corresponding to

an event and returns a value of confidence.

The data that were processed and produced results in Sec. 6.3.3 consisted of

injections along with simulated 2018 aLIGO noise. In addition to this data,

gstlal_excesspower was used to process the noise alone. Events that were recovered

from noise alone were used to determine the FAP. Since each noise event had an asso-

ciated confidence value, each value of the FAP uniquely specifies a confidence interval.

Efficiency was determined by finding the fraction of injections possessing a confidence

that exceeded each confidence interval. The ROC curve, shown in Fig. 35, plots efficiency

versus FAP and has an expected shape.

It is worth pointing out that the ROC curve depends significantly upon the injections

used in the study, as well as the distribution of the noise. The noise used to construct

the ROC curve in Fig. 35 contains estimated quantum and thermal noise for the 2018

aLIGO detector, but it is likely that real detector noise will contain other components,

including non-Gaussian noise components, that would modify the ROC curve presented

here.

Several extensions of this work would be useful. It would be interesting to plot the

ROC curve for different injection families, which could yield insight into the efficiency

of recovering signals of various morphology. The ROC curve could also be reproduced

for different simulated noise, and could help determine which components of noise affect

gravitational-wave searches the most.

6.4 Detector characterization

Initial LIGO’s sixth science run (S6) took place from July 2009 to August 2010, with data

collected by the Livingston (L1), Hanford (H1), GEO600 and Virgo(V1) detectors. The

data were searched for gravitational waves from a variety of sources, including unmodeled

bursts [135, 136]. Searches such as these are limited by the ability of detection algorithms

to distinguish astrophyscially induced signals from transient noise bursts in the detectors.

Transient noise bursts — also known as glitches — can arise from many potential

sources, including environmental, mechanical, or electronic components of the detectors,
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Figure 35: A ROC curve of efficiency versus FAP produced for gstlal_excesspower, shown on a

semilog scale.

and can appear in both the gravitational-wave strain channel as well as the hundreds

of auxiliary channels comprising various detector subsystems. In addition to potentially

mimicking gravitational-wave burst signals, noise transients can cause loss of lock in the

detectors, resulting in less observational time and poorer data quality. There is thus a

large demand for detector characterization efforts, which seek to characterize the noise

inherent to the LIGO detectors and develop data quality tools.

6.4.1 gstlal_excesspower and detector characterization

Because the excess power method is suitable for searching any type of data for a signal of

unknown shape, it can be utilized not only to perform astrophysically motivated searches

for gravitational-wave bursts, but also to aid in detector characterization efforts. To

avoid confusion between glitches and a possible gravitational-wave signal, detector char-

acterization efforts are typically limited to the auxiliary channels: channels that contain

data from sensors monitoring instrumental and environmental variables such as seismic

motion, laser beam alignment, mirror suspension and control, etc.
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wave signals, couplings between the auxiliary channels and the gravitational-wave strain

channel (the channel that should contain any gravitational-wave signal present in the

data) have been observed, and it is possible for noise transients in the auxiliary channels

to manifest in the gravitational-wave strain channel where gravitational-wave signals are

expected [137]. The complexity of the many subsystems and data channels is high, and

much is still unknown about the couplings between various channels and glitches.

Noise transients in the LIGO detectors can be characterized by a variety of parameters.

In general, it is useful to group noise transients into populations based on their “loudness”

or SNR, central frequency, and spectral morphology. Spectrograms, which visually display

the frequency spectrum as a function of time (or some other parameter), are often used

to identify noise transients and the populations to which they belong.

Existing gravitational-wave search pipelines are affected differently by noise transients.

Searches that use matched filtering tend to be affected by noise transients that mimic

the waveform templates. Unmodeled searches, such as gstlal_excesspower, are

affected by the frequency of noise transients occurring; despite demanding coincidence

in events between different detectors, glitches occur frequently enough that coincidence

alone cannot eliminate the problem.

Beyond demanding coincidence in data between different detectors, two methods (dis-

cussed in detail in McIver et al. [137]) can be used to mitigate noise transients. The first

involves identifying the source of various noise transients. In practice, such sources are

difficult to determine and can range from environmental events to equipment malfunc-

tion. The properties or characteristics of a given noise transient become are very useful

in determining its origin.

The second method to mitigate noise transients is to develop data quality flags which

are used to veto segments of data that are “suspicious”. This is necessary because even

when the source of a given noise transient has been identified, it is not always possible

to correct it. For example, if a noise transient is caused by a malfunctioning piece of

hardware, it may not be possible (or may take a long time) to fix the hardware. There

are several categories of data quality (DQ) flags:
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had a serious problem or was not operating near nominal sensitivity.

• Category 2. These flags veto segments of data that were taken during a time with a

well-understood detector problem. For instance, if a particular subsystem is known

to cause noise transients that couple into the gravitational-wave strain channel, then

segments of data displaying that problem receive a category 2 veto.

• Category 3. These DQ flags veto intervals that are characterized by a problem that

is not yet completely understood.

The outcome of a DQ flag depends on the particular search method being used, but in

general results in the removal of suspect data segments.

6.4.2 Low-frequency mock data challenge

With the era of Advanced LIGO about to begin, data quality studies are in high demand.

There is a need to develop new vetoing tools and identify the sources of problematic noise

transients, as discussed in the last section. To help fulfill this need, efforts to test and

“tune” gstlal_excesspower for detector characterization are underway.

A first proposed task is to complete an efficiency test similar to that discussed in

Sec. 6.3, but with injections designed to mimic the types of noise transients currently

appearing in auxiliary channel data, and with a power spectral density appropriate to

the channels chosen. A set of proposed injection parameters has been developed, based

on the seismic and suspension subsystems of the detector; these parameters are shown

in Table 5. The most notable difference between the detector characterization injection

parameters and the astrophysical injection parameters in Sec. 6.3 is the variation in

signal frequency; the injections in Table 5 are meant to represent the low-frequency noise

transients that appear int he seismic and suspension auxiliary channels.

Future work will involve analyzing these injections with gstlal_excesspower,

and making needed changes within the pipeline to tune it as an optimal search tool for

low-frequency transients. It can then be used to identify sources of problematic noise

transients and to develop new DQ tools for the Advanced LIGO era.
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Sine Gaussian BTLWNB

Number of injections 10000 1000

Central frequency 0.10 Hz – 10 Hz 0.10 Hz – 10 Hz

Bandwidth range N/A 0.75 Hz – 5.00 Hz

Q number 3-9 N/A

SNR (ρopt) distribution Gaussian, µ = 4, σ = 3.5 Gaussian, µ = 4, σ = 3.5

Table 5: Parameters for the low-frequency ETG mock data challenge injection waveforms.
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Chapter 7

Summary

“Organize, agitate, educate, must be our war cry.”

— Susan B. Anthony (1820-1906)

Throughout the past century, a number of dramatic scientific discoveries have ex-

panded human knowledge of the universe far beyond Earth’s boundaries. The direct

detection of gravitational waves, anticipated within the next several years, promises to

add to this legacy of science. Gravitational-wave astronomy will completely change the

paradigm of modern astronomy, and holds the potential to unlock hidden mysteries of the

cosmos. This dissertation has presented a series of works that probe gravitational-wave

detection efforts across a wide range of frequencies.

Part I focused on efforts to detect a stochastic background of gravitational waves

with PTAs. In Chapter 3, the optimal detection statistic for PTAs was presented in

the time-domain. The methodology presented takes into account two challenges in PTA

data analysis: the irregular sampling typical of PTA data, and the use of a timing model

to predict the times-of-arrival of radio pulses. As a result, the time-domain optimal

statistic is better suited to gravitational-wave data analysis than its frequency domain

counterpart. This statistic is a robust tool for making quick estimates of gravitational-

wave amplitude, creating software injections, and probing scaling laws for the SNR in PTA

experiments. The statistic does have drawbacks that make it an incomplete substitute

for a full Bayesian analysis, however.

In Chapter 4, isotropic stochastic gravitational-wave background detection with PTAs
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Although general relativity is considered one of the most successful theories in physics,

problems in cosmology and high energy physics have spurred the development of other

viable theories of gravity. To robustly test these theories against general relativity, gravity

must be tested in a strong-field regime. Gravitational waves provide a means to do so.

While allowing for any possible gravitational wave polarization mode, the expected

PTA cross-correlations for a stochastic background were determined. The expected

cross-correlations are proportional to a function called the overlap reduction function,

a factor that characterizes the response of the PTA to gravitational waves based on

the pulsar-Earth geometry. The overlap reduction function has a different form for

each gravitational-wave polarization and turns out to be frequency-dependent for non-

transverse gravitational waves.

In numerically evaluating the overlap reduction functions for each possible

gravitational-wave polarization, it was found that for “nearby” pulsar pairs — pulsar

pairs with small angular separations on the sky — PTAs have increased sensitivity to the

scalar-longitudinal and vector polarization modes that are present in some alternative

theories of gravity. In fact, for nearby pulsar pairs PTAs are more sensitive to non-

transverse gravitational waves than transverse gravitational waves by several orders of

magnitude. This has interesting implications for testing general relativity, since three of

the four additional polarization modes possible in a metric theory of gravity correspond

to non-transverse gravitational waves; this work suggests that PTAs are particularly well-

suited to testing general relativity. In Section 7.1, I outline a few directions in which this

work can be extended to perform tests of general relativity.

In part II, gravitational-wave detection was probed in the context of ground-based

laser interferometers. In Chapter 6, an excess power statistic was described as a tool

for use in gravitational-wave burst searches. The implementation of this statistic into

the gstlal_excesspower pipeline was laid out in detail. An effort to improve the

gstlal_excesspower vis-a-vis signal amplitude recovery was presented, and used to

estimate the amplitude of signals recovered in one week of simulated data containing

injections. The results of the one week ETG mock data challenge presented in Chapter 6
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which was shown to perform significantly better at recovering the optimal SNR than the

conventional method used by gstlal_excesspower.

The efficiency of gstlal_excesspower was probed at the end of Chapter 6 by

producing a ROC curve, which plots efficiency against the false alarm probability. A

future objective includes producing families of ROC curves for various parameters, which

will illustrate how different parameters affect the performance of the pipeline.

The potential of gstlal_excesspower as a tool for detector characterization was

discussed at the end of Chapter 6, along with some of the methods currently used in

detector characterization to mitigate noise transients that pose a problem in gravitational-

wave burst searches.

7.1 Future directions motivated by Chapter 4

The work described in Chapter 4 shows that for stochastic backgrounds of gravitational

waves, PTAs receive an enhanced response to non-transverse gravitational-wave polar-

izations predicted by some theories of gravity. It is worth pointing out that this effect is

unique to PTA experiments. Similar work probed in the context of ground-based laser in-

terferometers indicates that they have approximately the same response to all six possible

gravitational-wave polarizations [121]. This suggests that PTAs are uniquely well-suited

to searches for non-transverse gravitational waves.

Several future lines of research, based on this fact, are planned and/or ongoing.

7.1.1 Using the Deep Space Network to search for non-transverse gravita-

tional waves

Precision pulsar timing capabilities for the Deep Space Network (DSN) are just being

finalized [138], with pulsar backends being installed in Australia (to follow in the U.S.,

shortly) and observations anticipated to begin within a year. In addition to the advan-

tage of having antennas distributed across the globe (which improves PTA sensitivity),

the DSN will offer high-cadence observations that lead to dramatic improvements in
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sar backend system will also have the ability to remove dispersive effects caused by the

interstellar medium. This makes it an excellent tool for pulsar timing experiments.

With its new pulsar framework in place, the DSN could be utilized for a novel pulsar

timing experiment to test general relativity. Because PTAs are more sensitive to the

non-transverse gravitational waves produced in some metric theories of gravity than to

those of general relativity (for nearby pulsar pairs), globular cluster (GC) pulsars could

be timed specifically to search for non-transverse gravitational waves. In recent years,

large numbers of millisecond pulsars with small (many < 1◦) angular separations have

been discovered within GCs. In 2005, over 100 pulsars had been discovered in GCs [139]

with 21 millisecond pulsars in the cluster Terzan 5 alone [140], and the last decade has

seen the discovery of even more.

One observational advantage afforded by the new DSN pulsar backend lies in its

ability to make high cadence observations. Recent results in the literature [104], derived

completely in Chapter 3, have probed which observational parameters — the number of

pulsars, the cadence of observation, or the white-noise RMS values of the pulsars — lead to

the greatest gains in recovered signal-to-noise (SNR). Over large timescales (T & 5− 10

yrs), the best strategy to detect a stochastic background of gravitational waves is to

increase the number of pulsars in the array. On shorter observational timescales, however,

higher observational cadence lends itself to dramatic rises in the SNR (for PTAs with the

same number of pulsars). This can be seen in Fig. 12. Additionally, the large number

of millisecond pulsars in GC suggests that there need not be a trade-off between the

number of pulsars in the PTA and the cadence; with the DSN and GCs, both parameters

are likely to contribute to high values of recovered SNR.

To take advantage of gains in SNR due to high cadence, one could established a short

(∼ 3 yr) GC pulsar timing experiment with the DSN, using GCs with known millisecond

pulsar populations. One advantage to PTA experiments is that sensitivity only improves

over the observational timescale. Such an experiment could result in the direct detection

of a gravitational-wave signal; in the absence of a direct detection, constraining upper
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ment has one challenge; the close proximity of GC pulsars means that signals from these

pulsars would likely have some correlated noise (in particular, correlations in the effects

wrought by the interstellar medium). Extra care would need to be used in searching for a

stochastic background from such signals to mitigate the challenges arising from correlated

noise due to the interstellar medium.

7.1.2 Generalizing current detection pipelines to search for alternative-

theory polarizations

A number of stochastic gravitational-wave pipelines for PTAs are currently under devel-

opment, including one designed on the principles described in Chapter 3. The optimal

cross-correlation statistic-based pipeline serves as an excellent proxy to robust Bayesian

searches, and is dramatically less computationally expensive than Bayesian methods.

To generalize this pipeline so that searches for gravitational waves of all six polariza-

tions can take place, the Hellings-Downs curve (that describes the expected correlation

for general relativity) must be replaced by the more general overlap reduction functions

described in Chapter 4. For transverse gravitational-wave polarizations, these functions

depend only on the angular separation of the pulsars and can be described in a closed

analytic form; adding these functions to existing pipeline frameworks is trivial. For the

case of non-transverse gravitational-wave polarizations, however, the overlap reduction

function depends not only on the angular separation of the pulsars, but also on the

pulsar-Earth distances and the gravitational-wave frequency.

While pulsar distances are generally poorly constrained, observations of GCs provide

more optimistic measurements. The real challenge in incorporating the non-transverse

overlap reduction functions into existing pipeline framework comes from their frequency

dependence, which must be integrated out. This can be done numerically (at the expense

of computational speed), but recent work by Mingarelli et al. [69, 70] probing anisotropic

stochastic backgrounds suggests that there may be another way. In the framework Min-

garelli et al. devised to study anisotropic stochastic backgrounds, the Hellings-Downs
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position. It is possible that this framework may yield more a more tractable form of the

non-transverse overlap reduction functions than numerical integration, although it is not

immediately clear what the computational cost of doing so might be.

Numerous efforts are also underway to establish pipelines that utilize Bayesian anal-

ysis, including work by Stephen Taylor, Rutger van Haasteren and Justin Ellis at the Jet

Propulsion Laboratory. I have agreed to co-lead an effort with Stephen Taylor to con-

strain alternative-theory polarization states with PTAs using developing Bayesian tools.

The frequentist cross-correlation statistic pipeline will serve as an excellent proxy to these

Bayesian tools, and will help us to make robust constraints on PTA data.

7.1.3 Extracting and/or Disentangling Polarization Content from Observa-

tions

As a last step in utilizing current PTA pipelines to test general relativity, I intend to

develop a framework to extract polarization content from PTA observations. Current

frameworks, such as that laid out in the frequentist optimal cross-correlation statistic

pipeline, typically produce an estimate of the stochastic gravitational wave background

and a SNR value. While these estimates can be used to place upper limits on gravitational-

wave content in the data, they do not provide any information about what gravitational-

wave polarizations are present. Disentangling the polarization content is essential to

placing stringent constraints on various metric theories of gravity.

Nishizawa et al. (2009) has investigated the feasibility of extracting polarization con-

tent from gravitational-wave observations with ground-based laser interferometers [121].

In their approach, they express the optimal detection statistic as a linear combination

of contributions from three classes of gravitational-wave polarizations (see Fig. 14): two

tensor polarization modes (+,×), two vector modes (x, y) and two scalar modes (b, l).

The constant coefficients multiplying each of the three terms in the linear combination

depend on the gravitational-wave source spectrum, which (in principle) can vary from one

metric theory to another. To extract the polarization content from this linear combina-

tion, the constant coefficients multiplying each term must be determined. This requires



www.manaraa.com

140at least three ground-based detectors, although more than three may also be used.

For the case of PTAs, each pulsar-Earth link is effectively the arm of an interferometer,

and the framework of Nishiawa et al. could be applied to the optimal cross-correlation

statistic for PTAs to extract polarization information from PTA observations. Since

there are many more pulsar-Earth pairs than ground-based interferometer arms, it may

be possible to optimize the analysis so that certain combinations of pulsars are most

sensitive to each class of polarization.

The software injection procedure discussed in Sec. 3.2 could be used to test the method

discussed above in PTA data; signals of various gravitational-wave polarization could

be injected into data (real or simulated), and the linear combination described above

determined. By solving for the coefficients in this linear combination, it should be possible

to determine how efficiently content can be extracted.

As a last part of this problem, the polarization content that is extracted (which

depends on the source spectrum that produces it) must be related to the source spectra

that are possible in various metric theories of gravity. That is, different metric theories

of gravity yield different source spectra, so once presented with polarization content,

additional work needs to be done to determine what parameters in a given metric theory

can be constrained.
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